Film Effectiveness Performance for Coolant Holes Imbedded in Various Shallow Trench and Crater Depressions

Author(s):  
John R. Dorrington ◽  
David G. Bogard ◽  
Ronald S. Bunker

Film cooling adiabatic effectiveness was investigated for various configurations of coolant holes embedded in shallow transverse trenches or circular and elliptical shaped depressions. As a basis of comparison, a shaped hole configuration was also tested. Tests were conducted on the suction side of a simulated vane at a downstream location where pressure gradient and curvature effects were small. For the transverse trench, effects of the trench width with varying depths, the trench wall angle, and the pitch between holes within the trench were investigated with trench depths that ranged from 0.5d to 1d. The crater depressions were tested at a depth of 0.5d. The film effectiveness for the crater depressions was not as good as the best performing trench configuration at that depth, but they all performed better than the baseline configuration of cylindrical holes. The trench configurations were found to have an optimum depth of 0.75d, with little improvement in performance for trench depths greater than this. Comparison of the trench performance with a typical shaped hole configuration showed that film effectiveness for the trench was similar to that of the shaped holes.

Author(s):  
James R. Winka ◽  
Joshua B. Anderson ◽  
David G. Bogard ◽  
Michael E. Crawford ◽  
Emily J. Boyd

Surface curvature is known to have significant effects on film cooling performance, with convex curvature inducing increased film effectiveness and concave curvature causing decreased film effectiveness. Generally, these curvature effects have been presumed to scale with 2r/d at the film cooling hole location, where r is the radius of curvature and d is coolant hole diameter. In this study, the validity of this scaling of curvature effects are examined by performing experiments in regions of large and low curvature on a model vane. Single rows of cylindrical holes were placed at various locations along the high curvature section of the suction side of the vane. For the first series of experiments, a single row of holes was placed at two locations with different local surface curvature. The coolant hole diameters were then adjusted to match 2r/d values. Results from these experiments showed that there was better correspondence of film performance when using the 2r/d scaling, but there was not an exact matching of performance. A second series of experiments focused on evaluating the effects of curvature downstream of the coolant holes. One row of holes was placed at a position upstream of the highest curvature, while another row was placed at a downstream position such that the radius of curvature was equivalent for the two rows of holes. Results indicated that the local radius of curvature is not sufficient in understanding the performance of film cooling. Instead, the curvature envelope downstream of the coolant holes plays a significant role on the performance of film cooling for cylindrical holes.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Ruwan P. Somawardhana ◽  
David G. Bogard

Recent studies have shown that film cooling with holes embedded in a shallow trench significantly improves cooling performance. In this study, the performance of shallow trench configurations was investigated for simulated deteriorated surface conditions, i.e., increased surface roughness and near-hole obstructions. Experiments were conducted on the suction side of a scaled-up simulated turbine vane. Results from the study indicated that as much as 50% degradation occurred with upstream obstructions, but downstream obstructions actually enhanced film cooling effectiveness. However, the transverse trench configuration performed significantly better than the traditional cylindrical holes, both with and without obstructions and almost eliminated the effects of both surface roughness and obstructions.


Author(s):  
Ruwan P. Somawardhana ◽  
David G. Bogard

Recent studies have shown that film cooling with holes imbedded in a shallow trench significantly improve cooling performance. In this study, the performance of shallow trench configurations were investigated for simulated deteriorated surface conditions, i.e. increased surface roughness and near hole obstructions. Experiments were conducted on the suction side of a scaled-up simulated turbine vane. Results from the study indicated that as much as 50% degradation occurred with upstream obstructions, but downstream obstructions actually enhanced film cooling effectiveness. However, the transverse trench configuration performed significantly better than the traditional cylindrical holes, both with and without obstructions and almost eliminated the effects of both surface roughness and obstructions.


Author(s):  
Rui Zhu ◽  
Terrence W. Simon ◽  
Gongnan Xie

Abstract In modern gas turbines, film cooling is the most common and efficient way to provide thermal protection for hot components. Secondary holes to a primary film cooling hole are used to improve film cooling performance by creating anti-kidney vortices, a technique that has been well documented using flat plate models. This study aims to evaluate the effects of secondary holes on film cooling effectiveness over an airfoil. The film cooling performance and flow fields of a row of primary holes with secondary holes on the pressure side and suction side of a C3X vane are numerically investigated and compared with the results of a single row of cylindrical holes and two rows of staggered cylindrical holes. Cases with different blowing ratios are analyzed. It is shown from the simulation that film cooling effectiveness of primary holes with secondary holes is much better than with a single row of cylindrical holes, and slightly better than with two rows of staggered holes on both pressure side and suction side, with the same amount of coolant usage and blowing ratio. The enhancement is higher on the pressure side than on the suction side. The results show that adding secondary holes can enhance film cooling effectiveness by creating anti-kidney vortices, which will weaken jet lift-off from the primary holes caused by the kidney vortex pair, especially at higher blowing ratios. In addition, film coverage of primary holes with secondary holes is wider and persists further downstream than for a single row of cylindrical holes.


2013 ◽  
Vol 136 (6) ◽  
Author(s):  
James R. Winka ◽  
Joshua B. Anderson ◽  
Emily J. Boyd ◽  
David G. Bogard ◽  
Michael E. Crawford

Surface curvature is known to have significant effects on film cooling performance, with convex curvature inducing increased film effectiveness and concave curvature causing decreased film effectiveness. Generally, these curvature effects have been presumed to scale with 2r/d at the film cooling hole location, where r is the radius of curvature and d is coolant hole diameter. In this study, the validity of this scaling of curvature effects are examined by performing experiments in regions of large and low curvature on a model vane. Single rows of cylindrical holes were placed at various locations along the high curvature section of the suction side of the vane. For the first series of experiments, a single row of holes was placed at two locations with different local surface curvature. The coolant hole diameters were then adjusted to match 2r/d values. Results from these experiments showed that there was better correspondence of film performance when using the 2r/d scaling, but there was not an exact matching of performance. A second series of experiments focused on evaluating the effects of curvature downstream of the coolant holes. One row of holes was placed at a position upstream of the highest curvature, while another row was placed at a downstream position such that the radius of curvature was equivalent for the two rows of holes. Results indicated that the local radius of curvature is not sufficient in understanding the performance of film cooling. Instead, the curvature envelope downstream of the coolant holes plays a significant role on the performance of film cooling for cylindrical holes.


Author(s):  
Atui Kohil ◽  
David G. Bogard

In this study the film cooling performance of a single row of discrete holes inclined at an injection angle of 55° is investigated at a density ratio of DR = 1.6. Three different hole geometries were used in this study, a round hole and two shaped holes. One shaped hole had forward and lateral expansions of 15°, and the other a 15° lateral with a 25° forward expansion. For reference, a round hole with an injection angle of 35° was also tested. The film cooling performance of each hole shape was evaluated using adiabatic effectiveness, thermal field, and velocity field measurements. The shaped holes showed higher spatially averaged adiabatic effectiveness than the round hole over the whole range of momentum flux ratios (I) investigated. The effectiveness values for the shaped holes were only marginally better than the round hole at the low I, but at the high I, the shaped holes performed much better than the round hole. The temperature and velocity field measurements near the hole exit suggest that there is a slight detachment of the jet from the wall for the round hole, while the jets remain attached for the two shaped holes. The shaped hole with the larger forward expansion had a warmer jet with a higher trajectory at the hole exit suggesting ingestion of mainstream fluid and flow separation within the hole.


Author(s):  
John W. McClintic ◽  
Thomas E. Dyson ◽  
David G. Bogard ◽  
Sean D. Bradshaw

Boundary layer velocity and turbulence profiles were measured on the suction side of a scaled up, film-cooled turbine vane airfoil. There have been a number of previous studies of the velocity profile on a turbine vane, but few have taken velocity profile data with film cooling, and none have taken such data on the suction side of the vane. Velocity and turbulence profile data were taken at two locations on the suction side of the vane — one at a high curvature region and one further downstream in a low curvature region. Data were collected for high (20%) and low (0.5%) mainstream turbulence conditions. For the upstream, high curvature location, velocity and turbulence profiles were found with and without the showerhead blowing and within and outside of the merged showerhead coolant jet. The data for the low curvature, downstream location was taken with injection from the showerhead alone, a second upstream row of holes alone, and the combination of the two cases. It was found that the presence of an active upstream row of holes thickens the boundary layer and increases urms both within and beyond the extent of the boundary layer. Span-wise variations showed that these effects are strongest within the core of the coolant jets. At the downstream location, the boundary layer velocity profile was most strongly influenced by the row of holes immediately upstream of that location. Finally, turbulence integral length scale data showed the effect of large scale mainstream turbulence penetrating the boundary layer. The increase in turbulence, thickening of the boundary layer, and large scale turbulence all play important roles in row to row coolant interactions and affect the film cooling effectiveness.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Jacob D. Moore ◽  
Christopher Yoon ◽  
David G. Bogard

Abstract Surface curvature has been shown to have significant effects on the film cooling performance of round holes, but the literature include few studies of its effects on shaped holes despite their prevalence in gas turbines. Experiments were performed using two rows of holes placed on the suction side of a scaled-up turbine blade in a low Mach number linear cascade wind tunnel with low freestream turbulence. The rows were placed in regions of high and low convex surface curvature. Geometries and flow conditions for the rows were matched to those from previous flat plate studies. Comparison of the adiabatic effectiveness results from the high curvature and flat plate rows revealed the same trends as those in the literature using round holes, with increased performance for the high curvature row at lower blowing ratios and the opposite at higher ones. The low curvature row had similar performance to the flat plate row at lower blowing ratios, suggesting the mild convex curvature had little beneficial effect. At higher blowing ratios, the low curvature row had inferior performance, which was attributed to the local freestream adverse pressure gradient that generated additional turbulence, promoting jet-to-mainstream mixing and decreasing performance.


Author(s):  
Katharine L. Harrison ◽  
David G. Bogard

Recent studies have shown that film cooling adiabatic effectiveness can be significantly improved when holes are embedded in shallow, transverse trenches. In this study computational simulations were made using the commercial CFD code FLUENT to determine if the dramatic improvement in film cooling performance was predictable. Simulations were made of a baseline cylindrical hole configuration, and narrow and wide trench configurations. Simulations correctly predicted that the narrow trench outperformed the baseline row of cylindrical holes and the wide trench at all blowing ratios. Furthermore, the simulations showed that enhanced performance with the trench could be attributed to decreased separation of the coolant jets. The success of these predictions show that computational simulations can be used as a tool for studying and identifying promising film cooling configurations.


Author(s):  
Kevin Liu ◽  
Shang-Feng Yang ◽  
Je-Chin Han

Adiabatic film-cooling effectiveness is examined systematically on a typical high pressure turbine blade by varying three critical flow parameters: coolant blowing ratio, coolant-to-mainstream density ratio, and freestream turbulence intensity. Three average coolant blowing ratios 1.0, 1.5, and 2.0; three coolant density ratios 1.0, 1.5, and 2.0; two turbulence intensities 4.2% and 10.5%, are chosen for this study. Conduction-free pressure sensitive paint (PSP) technique is used to measure film-cooling effectiveness. Three foreign gases — N2 for low density, CO2 for medium density, and a mixture of SF6 and Argon for high density are selected to study the effect of coolant density. The test blade features 45° compound-angle shaped holes on the suction side and pressure side, and 3 rows of 30° radial-angle cylindrical holes around the leading edge region. The inlet and the exit Mach number are 0.27 and 0.44, respectively. Reynolds number based on the exit velocity and blade axial chord length is 750,000. Results reveal that the PSP is a powerful technique capable of producing clear and detailed film effectiveness contours with diverse foreign gases. As blowing ratio exceeds the optimum value, it induces more mixing of coolant and mainstream. Thus film-cooling effectiveness reduces. Greater coolant-to-mainstream density ratio results in lower coolant-to-mainstream momentum and prevents coolant to lift-off; as a result, film-cooling increases. Higher freestream turbulence causes effectiveness to drop everywhere except in the region downstream of suction side. Results are also correlated with momentum flux ratio and compared with previous studies. It shows that compound shaped hole has the greatest optimum momentum flux ratio, and then followed by axial shaped hole, compound cylindrical hole, and axial cylindrical hole.


Sign in / Sign up

Export Citation Format

Share Document