On Line Compressor Washing on Large Frame 9-FA Gas Turbines: Erosion on R0 Compressor Blade Leading Edge — Field Performance With a Novel On Line Wash System

Author(s):  
Jos Oosting ◽  
Klaas Boonstra ◽  
Annemarie de Haan ◽  
Dick van der Vecht ◽  
Jean-Pierre Stalder ◽  
...  

On line compressor washing is an established practice amid gas turbine operators. Among these operators is the Netherlands Division of Electrabel who is operating at Eemshaven 5 x GE Frame 9-FA units since 1995. The plant operator used to perform routinely a daily on line wash and a single off line wash every year at shut down of the units for the annual inspection or maintenance outage. The on line water wash (OLWW) systems installed on these 5 engines are of the Turbotect Mk1 nozzle design and were originally procured and supplied by the OEM. To our knowledge, all other manufactured gas turbines in the 7/9-FA fleet are equipped with the OEMs’ own engineered OLWW nozzle systems. The OLWW regime of washing was reduced in June 2001 upon receipt of a recommendation by the OEM to inspect the first stages of the compressor for erosion marks. This recommendation was issued because some events have lead to investigation on erosion issues which materialized in the R0 (first stage rotor) compressor blades in some engines of the 7/9-FA fleet operating with the OEM OLWW system and resulting from frequent compressor wash routine, and/or from water ingestion used in power augmentation. Likewise, during the same time, some gas turbines at Eemscentrale had undergone their first major overhaul which allowed the compressor first row blading to be examined for signs of erosion. It was found that only minor erosion at the R0 blade leading edge had occurred over more than seven years of operation, during which period a daily on line wash had been performed. However, because of the erosion concerns among the 7/9-FA fleet and the OEM-recommended frequent inspections and measures to mitigate the rate of erosion due to droplet impingement, Electrabel investigated independently for a way of further reducing the erosion rate while maintaining on line washing over the lifetime of the gas turbine and improving the cleaning efficiency. To this effect, the OLWW system on unit EC-6 was upgraded in June 2004 with a new on line nozzle system specifically developed for use in large gas turbines. This paper presents the investigation results after some 24 months of operation and routine on line compressor washing. The Turbotect Mk3 OLWW nozzle system demonstrated and confirmed that it is contributing to mitigate the erosion risk on the R0 compressor blade leading edge, and in turn to decrease the number of blending operations over the life time of the R0 compressor blades. This nozzle designed for on line compressor cleaning of large gas turbines achieved a substantially improved cleaning effectiveness, respectively a lower rate in power degradation, by approx. 30 to 40% as compared to the current in use Mk1 OLWW nozzle system.

2014 ◽  
Vol 136 (10) ◽  
Author(s):  
Uyioghosa Igie ◽  
Pericles Pilidis ◽  
Dimitrios Fouflias ◽  
Kenneth Ramsden ◽  
Panagiotis Laskaridis

Industrial gas turbines are susceptible to compressor fouling, which is the deposition and accretion of airborne particles or contaminants on the compressor blades. This paper demonstrates the blade aerodynamic effects of fouling through experimental compressor cascade tests and the accompanied engine performance degradation using turbomatch, an in-house gas turbine performance software. Similarly, on-line compressor washing is implemented taking into account typical operating conditions comparable with industry high pressure washing. The fouling study shows the changes in the individual stage maps of the compressor in this condition, the impact of degradation during part-load, influence of control variables, and the identification of key parameters to ascertain fouling levels. Applying demineralized water for 10 min, with a liquid-to-air ratio of 0.2%, the aerodynamic performance of the blade is shown to improve, however most of the cleaning effect occurred in the first 5 min. The most effectively washed part of the blade was the pressure side, in which most of the particles deposited during the accelerated fouling. The simulation of fouled and washed engine conditions indicates 30% recovery of the lost power due to washing.


Author(s):  
Ernst Schneider ◽  
Saba Demircioglu Bussjaeger ◽  
Susana Franco ◽  
Dirk Therkorn

Due to compressor fouling, gas turbine efficiency decreases over time, resulting in decreased power output of the plant. To counteract the effects of compressor fouling, compressor on-line and off-line washing procedures are used. The effectiveness of compressor off-line washing is enhanced if combined with the cleaning of the VIGVs and the first compressor blade row by hand. This paper presents a thorough analysis of the effects of compressor on-line washing on the gas turbine performance. The analysis is based on the measured data of six gas turbines operated at two different plants. Different washing schedules and washing fluids are analyzed and compared. Furthermore, the effects of compressor on-line washing on the load distribution within the compressor are analyzed. The performance benefit of daily compressor on-line washing compared with weekly compressor on-line washing is quantified. As expected, daily compressor on-line washing yields the lowest power degradation caused by compressor fouling. Also, the effect of washing additives is analyzed. It is shown with long term data that compressor on-line washing cleans up to the first 11 compressor stages, as can be detected well in the compressor. With a view to gas turbine performance optimization, the recommendation is to perform compressor off-line washing at regular intervals and to take advantage of occasions such as inspections, when the gas turbine is cooled down anyhow. Especially for gas turbines with a high fouling rate, a daily compressor on-line washing schedule should be considered to reduce the power loss. For gas turbines operating with high fogging, compressor on-line washing has no added benefit. To determine the optimal compressor washing schedule, compressor blade erosion also has to be considered. A reasonable balance between compressor on-line washing and off-line washing improves the gas turbine performance and optimizes the gas turbine availability.


Author(s):  
H. J. Kolkman

Deposits are regularly removed from compressor blades and vanes of installed jet engines and gas turbines by compressor washing. Hereby a compressor cleaner is sprayed into the compressor while operating at reduced or normal r.p.m. Recently developed compressor cleaners are claimed to be ecologically sound. In addition, many new compressor cleaners contain a corrosion inhibitor. The cleaning efficiency of eight (old and new) compressor cleaners was determined by means of simulated compressor washing of compressor blades that had become foul in service. For the situation simulated, the cleaning efficiency of new, ecologically sound cleaners turned out to be poor as compared with old compressor cleaners. The corrosion inhibition offered by those cleaners that contain a corrosion inhibitor was found to be satisfactory.


Author(s):  
Ernst Schneider ◽  
Saba Demircioglu ◽  
Susana Franco ◽  
Dirk Therkorn

Due to compressor fouling, gas turbine efficiency decreases over time, resulting in decreased power output of the plant. To counteract the effects of compressor fouling, compressor on-line and off-line washing procedures are used. The effectiveness of compressor off-line washing is enhanced if combined with the cleaning of the VIGVs and the first compressor blade row by hand. This paper presents a thorough analysis of the effects of compressor on-line washing on the gas turbine performance. The analysis is based on the measured data of six gas turbines operated at two different plants. Different washing schedules and washing fluids are analyzed and compared. Furthermore, the effects of compressor on-line washing on the load distribution within the compressor are analyzed. The performance benefit of daily compressor on-line washing compared to weekly compressor on-line washing is quantified. As expected, daily compressor on-line washing yields the lowest power degradation caused by compressor fouling. Also, the effect of washing additives is analyzed. It is shown with long term data that compressor on-line washing cleans up to the first 11 compressor stages, as can be detected well in the compressor. With a view to gas turbine performance optimization, the recommendation is to perform compressor off-line washing at regular intervals and to take advantage of occasions such as inspections, when the gas turbine is cooled down anyhow. Especially for gas turbines with a high fouling rate, a daily compressor on-line washing schedule should be considered to reduce the power loss. For gas turbines operating with high fogging, compressor on-line washing has no added benefit. To determine the optimal compressor washing schedule, compressor blade erosion also has to be considered. A reasonable balance between compressor on-line washing and off-line washing improves the gas turbine performance and optimizes the gas turbine availability.


1993 ◽  
Vol 115 (3) ◽  
pp. 674-677 ◽  
Author(s):  
H. J. Kolkman

Deposits are regularly removed from compressor blades and vanes of installed jet engines and gas turbines by compressor washing. A compressor cleaner is sprayed into the compressor while operating at reduced or normal rpm. Recently developed compressor cleaners are claimed to be ecologically sound. In addition, many new compressor cleaners contain a corrosion inhibitor. The cleaning efficiency of eight (old and new) compressor cleaners was determined by means of simulated compressor washing of compressor blades that had become fouled in service. For the situation simulated, the cleaning efficiency of new, ecologically sound cleaners turned out to be poor as compared with old compressor cleaners. The corrosion inhibition offered by those cleaners that contain a corrosion inhibitor was found to be satisfactory.


2014 ◽  
Vol 971-973 ◽  
pp. 143-147 ◽  
Author(s):  
Ping Dai ◽  
Shuang Xiu Li

The development of a new generation of high performance gas turbine engines requires gas turbines to be operated at very high inlet temperatures, which are much higher than the allowable metal temperatures. Consequently, this necessitates the need for advanced cooling techniques. Among the numerous cooling technologies, the film cooling technology has superior advantages and relatively favorable application prospect. The recent research progress of film cooling techniques for gas turbine blade is reviewed and basic principle of film cooling is also illustrated. Progress on rotor blade and stationary blade of film cooling are introduced. Film cooling development of leading-edge was also generalized. Effect of various factor on cooling effectiveness and effect of the shape of the injection holes on plate film cooling are discussed. In addition, with respect to progress of discharge coefficient is presented. In the last, the future development trend and future investigation direction of film cooling are prospected.


Author(s):  
Jiaqi Wang ◽  
Xianwu Luo ◽  
Wanming Li ◽  
Bin Ji

Two-channel pumps usually have very complicated flow field due to the special impeller geometry. The present paper treats the internal flow analysis based on numerical simulation so as to investigate the pumping performance and passage erosion for a two-channel centrifugal pump used for transporting salt particles. The static state flows are calculated by applying RANS method and k-omega SST turbulence model. The numerical results indicate that there are strong circulation flows near the impeller inlet and blade pressure side, and zones with high turbulent kinetic energy near impeller exit when the pump is operated under the designed flow rate i.e. Qd. Pressure decay is also found at the rear part of blade pressure side. At the operation condition of 1.3Qd, the internal flow becomes better. Further, the numerical analysis based on Eulerian-Lagrangian method shows the trajectory of salt particle, salt particle concentration and erosion rate in the pump. It is noted that the salt particles go smoothly in the flow passage due to the large section size of the pump, and there is severe erosion at the blade leading edge and the wall of volute casing due to strong impingement and high particle concentration. Thus, these areas such as blade leading edge and the wall of volute casing are the zones with high erosion risk in the two-channel pump.


2022 ◽  
Author(s):  
S. Sathish ◽  
S. Seralathan ◽  
Mohan Sai Narayan Ch ◽  
V. Mohammed Rizwan ◽  
U. Prudhvi Varma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document