scholarly journals Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research

Author(s):  
George Kopasakis ◽  
Joseph W. Connolly ◽  
Daniel E. Paxson ◽  
Peter Ma

Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.

2010 ◽  
Vol 132 (4) ◽  
Author(s):  
George Kopasakis ◽  
Joseph W. Connolly ◽  
Daniel E. Paxson ◽  
Peter Ma

Under the NASA Fundamental Aeronautics Program, the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long, slim body aircrafts with pronounced aeroservoelastic modes. These modes can potentially couple with propulsion system dynamics, leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena, an integrated model is needed that includes both airframe structural dynamics and the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle aeropropulsoservoelastic model and for propulsion efficiency studies.


2020 ◽  
Vol 10 (2) ◽  
pp. 5406-5411 ◽  
Author(s):  
M. T. M. Espino ◽  
L. M. Bellotindos

As the human population continues to grow, the global growth of the livestock sector will continue to rise as well. In the Philippines, the demand for chicken meat is projected to triple by 2050. In this study, the increasing consumption and long-term sufficiency were evaluated with the use of the system dynamics concept. With system modeling and computer-based simulation techniques, the available data on chicken meat supply chain were processed considering that factors behave dynamically. The simulated model facilitated the forecasting of key variables which may drop sufficiency from 87% in 2015 to 60% by 2050 if no proper actions take place in the areas of production and consumption. As a whole, this study developed and demonstrated preliminary system dynamics-based and computer based-approaches in order to understand the chicken meat sector. This showed that a dynamic systems-based paradigm shift in food and agricultural systems analysis can help address operational and strategic issues regarding food security.


Sign in / Sign up

Export Citation Format

Share Document