scholarly journals A System Dynamics Modeling and Computer-based Simulation in Forecasting Long-term Sufficiency: A Philippine Chicken Meat Sector Case Study

2020 ◽  
Vol 10 (2) ◽  
pp. 5406-5411 ◽  
Author(s):  
M. T. M. Espino ◽  
L. M. Bellotindos

As the human population continues to grow, the global growth of the livestock sector will continue to rise as well. In the Philippines, the demand for chicken meat is projected to triple by 2050. In this study, the increasing consumption and long-term sufficiency were evaluated with the use of the system dynamics concept. With system modeling and computer-based simulation techniques, the available data on chicken meat supply chain were processed considering that factors behave dynamically. The simulated model facilitated the forecasting of key variables which may drop sufficiency from 87% in 2015 to 60% by 2050 if no proper actions take place in the areas of production and consumption. As a whole, this study developed and demonstrated preliminary system dynamics-based and computer based-approaches in order to understand the chicken meat sector. This showed that a dynamic systems-based paradigm shift in food and agricultural systems analysis can help address operational and strategic issues regarding food security.

2004 ◽  
Vol 14 (2) ◽  
pp. 259-272 ◽  
Author(s):  
P. Georgiadis ◽  
D. Vlachos

Reverse logistics is a modern field of consideration, research and study, providing helpful information on the operation of the closed-loop supply chain. Although the starting point of this field is traced back to the early 90?s, no standard method has been suggested, neither prevailed. The purpose of this paper is to introduce a new approach on the study of reverse logistics. It is actually a review on how System Dynamics (SD) can be a helpful tool when it is used in the reverse logistics field. The paper explains the basic theory of the system modeling and next it utilizes the reverse logistics model. Finally, an illustrative example shows how SD modeling can be used to produce a powerful long-term decision-making tool.


Author(s):  
Purnendu Mandal ◽  
Enrique ("Henry") Venta

Modeling is a great approach to analyze long-term consequences of policy options in manufacturing. In this chapter two modeling approaches are discussed for understanding the intertwined relationships among factors which influence the performance and competitiveness of manufacturing: the system dynamics approach and the quantitative survey approach. The system dynamics approach is used to develop a conceptual model of the strategic issues that influence the performance and competitiveness of manufacturing, and the results of a quantitative survey are used to understand the actual extent of the influences of various factors in the current situation.


2015 ◽  
Vol 2015 ◽  
pp. 1-20 ◽  
Author(s):  
Steen Nielsen ◽  
Erland H. Nielsen

The main purpose of this paper is to improve on the conceptual as well as the methodological aspects of BSC as a quantitative model by combining elements from traditional balanced scorecard (BSC) thinking with the Systems Thinking. This is done by combining short and long term aspects of measurements. The result is then used to build and construct a balanced scorecard model for strategic learning with the specific aim to maintain satisfied customers and motivated employees. Strategic planning, operational execution, feedback, and learning are some of the most important key features of any performance measurement model. This paper aims to address not only the conceptual domain related to BSC, that is, learning and system dynamics causality and feedback, but also the methodological domain concept of precision solved by differential equations. Our results show how a potential move from a static strategic vision map to a linked and dynamic understanding may be not fully realistic but very useful for learning purposes. The new knowledge obtained from the learning feedbacks fertilizes both decision discussion and decision-making and what may be required in order to move to the next level of BSC and system dynamics integration.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
George Kopasakis ◽  
Joseph W. Connolly ◽  
Daniel E. Paxson ◽  
Peter Ma

Under the NASA Fundamental Aeronautics Program, the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long, slim body aircrafts with pronounced aeroservoelastic modes. These modes can potentially couple with propulsion system dynamics, leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena, an integrated model is needed that includes both airframe structural dynamics and the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle aeropropulsoservoelastic model and for propulsion efficiency studies.


2013 ◽  
Vol 378 ◽  
pp. 483-486
Author(s):  
Yu Ning Wang ◽  
Hui Ming Zeng ◽  
Bin Qing Tang ◽  
Bin Xiang Hu

Due to mandatory emission reduction and rising oil prices electric vehicles are about to be introduced in mass markets. This paper presents a system dynamics model of Chinas development strategy of electric vehicle industry. The focus of the paper is to study the influence of four major dynamic factors government policies, technology innovation, market demand and competitive ability. It gives an overall scenario of the development and highlights the major problems faced by Chinese electric vehicles industry, and how SD modeling can be used for the analysis of the industry developing policy. The model has been used to simulate the influence of these dynamic factors for 20 years, and a serious of policy tests and some useful policy suggestions were put forward. The result suggested that government support will still play a key role in a long-term.


2021 ◽  
Vol 2 ◽  
Author(s):  
Erica Rieder ◽  
Lincoln R. Larson ◽  
Michael 't Sas-Rolfes ◽  
Birgit Kopainsky

Conservation practitioners routinely work within complex social-ecological systems to address threats facing biodiversity and to promote positive human-wildlife interactions. Inadequate understanding of the direct and indirect, short- and long-term consequences of decision making within these dynamic systems can lead to misdiagnosed problems and interventions with perverse outcomes, exacerbating conflict. Participatory system dynamics (SD) modeling is a process that encourages stakeholder engagement, synthesizes research and knowledge, increases trust and consensus and improves transdisciplinary collaboration to solve these complex types of problems. Tiger conservation exemplifies a set of interventions in a complex social-ecological system. Wild tigers remain severely threatened by various factors, including habitat constraints, human-wildlife conflict, and persistent consumer demand for their body parts. Opinions differ on whether commercial captive tiger facilities reduce or increase the threat from poaching for trade, resulting in policy conflict among diverse stakeholder groups. This paper explains how we are working with international conservation partners in a virtual environment to utilize a participatory SD modeling approach with the goal of better understanding and promoting coexistence of humans and wild tigers. We highlight a step-by-step process that others might use to apply participatory SD modeling to address similar conservation challenges, building trust and consensus among diverse partners to reduce conflict and improve the efficacy of conservation interventions.


2019 ◽  
Vol 8 (4) ◽  
pp. 14-29
Author(s):  
Marc Haddad ◽  
Rami Otayek

The adoption of the lean approach has yet to extend to the majority of manufacturers in developing countries where traditional work practices are dominant and cultural resistance to change is high. This research consists of a case study about lean implementation at a clothing manufacturer in a developing country. Production wastes are identified and appropriate lean techniques, namely Total Productive Maintenance, Kanban and Supermarket Pull, are identified to eliminate or reduce them. The potential impacts on the manufacturing system are first assessed using a system dynamics model. The modeling results showed a “getting worse before getting better” behavior as work-in-process increased in the short-term, before a net reduction of 34% on average was achieved over the first 3 months. This result was replicated by a similar trend in the actual lean implementation on the factory floor, showing the usefulness of SD modeling for supporting the sustainability of lean interventions where short-term drawbacks can be deceptive when compared to the long-term benefits of lean.


2013 ◽  
Vol 765-767 ◽  
pp. 278-281
Author(s):  
Yu Ning Wang ◽  
Hui Ming Zeng ◽  
Bing Qing Tang ◽  
Bin Xiang Hu

Due to mandatory emission reduction and rising oil prices electric vehicles are about to be introduced in mass markets. This paper presents a system dynamics model of Chinas development strategy of electric vehicle industry. The focus of the paper is to study the influence of four major dynamic factors government policies, technology innovation, market demand and competitive ability. It gives an overall scenario of the development and highlights the major problems faced by Chinese electric vehicles industry, and how SD modeling can be used for the analysis of the industry developing policy. The model has been used to simulate the influence of these dynamic factors for 20 years, and a serious of policy tests and some useful policy suggestions were put forward. The result suggested that government support will still play a key role in a long-term.


Author(s):  
Ying Li ◽  
Timothy R. B. Taylor ◽  
Gabriel B. Dadi ◽  
Roy E. Sturgill

State transportation agencies (STAs) across the country face many challenges in repairing and enhancing highway infrastructure to meet rapidly increasing transportation needs. One of these challenges is maintaining an adequate and efficient agency staff. To effectively plan for future staffing levels, STAs need a method for forecasting long-term staffing requirements. However, the methods currently in use cannot function without well-defined projects; therefore, making long-term forecasts is difficult. This paper seeks to develop a dynamic model that captures the feedback mechanisms within the system that determines highway staffing requirements. The system dynamics modeling method was used to build the forecasting model. The formal model was based on dynamic hypotheses derived from a literature review and interviews with transportation experts. Qualitative and quantitative data from literature and federal and state databases were used to support the values and equations in the model. The model integrates STAs’ strategic plans, funding situations, and staffing strategies and determines future staffing levels and will hopefully fill the absence of long-term forecasting tools at STAs. Standard system dynamics validation procedures were used to test the model, after which input data specific to the Kentucky Transportation Cabinet were used to calibrate the model and to simulate an expected retirement wave and search for solutions to address temporary staffing shortages.


Author(s):  
George Kopasakis ◽  
Joseph W. Connolly ◽  
Daniel E. Paxson ◽  
Peter Ma

Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.


Sign in / Sign up

Export Citation Format

Share Document