Real-Time Execution of a High Fidelity Aero-Thermodynamic Turbofan Engine Simulation

Author(s):  
Igor Fuksman ◽  
Steven Sirica

In the past, a typical way of executing simulations in the real-time environment had been to use transfer function models, state-variable models or reduced-order aero-thermodynamic models. These models are typically not as accurate as the conventional full-fidelity aero-thermodynamic simulations used as basis for generation of the real-time models. Also, there is a cost associated with creation and maintenance of these derived real-time models. The ultimate goal is to use the high fidelity aero-thermodynamic simulation as the real-time model. However, execution of the high fidelity aero-thermodynamic simulation in a real-time environment is a challenging objective since accuracy of the simulation cannot be sacrificed to optimize execution speed, yet execution speed still has to be limited by some means to fit into real-time constraint. This paper discusses the methodology used to resolve this challenge, thereby enabling use of a contemporary turbofan engine high fidelity aero-thermodynamic simulation in the real-time environments.

Author(s):  
Igor Fuksman ◽  
Steven Sirica

In the past, a typical way of executing simulations in a real-time environment had been to use transfer function models, state-variable models, or reduced-order aero-thermodynamic models. These models are typically not as accurate as the conventional full-fidelity aero-thermodynamic simulations used as a basis for the generation of real-time models. Also, there is a cost associated with the creation and maintenance of these derived real-time models. The ultimate goal is to use the high fidelity aero-thermodynamic simulation as the real-time model. However, execution of the high fidelity aero-thermodynamic simulation in a real-time environment is a challenging objective since accuracy of the simulation cannot be sacrificed to optimize execution speed, yet execution speed still has to be limited by some means to fit into real-time constraint. This paper discusses the methodology used to resolve this challenge, thereby enabling use of a contemporary turbofan engine high fidelity aero-thermodynamic simulation in real-time environments. This publication reflects the work that was initially presented at the ASME Turbo Expo 2011 (Fuksman and Sirica, 2011, “Real-Time Execution of a High Fidelity Aero-Thermodynamic Turbofan Engine Simulation,” ASME Turbo Expo, Jun. 6-10, Vancouver, Canada, Paper No. GT2011-46661).


2014 ◽  
Vol 61 (2) ◽  
pp. 270-285 ◽  
Author(s):  
Michael Kleer ◽  
Andrey Gizatullin ◽  
Klaus Dreßler ◽  
Steffen Müller

Abstract The paper encompasses the overview of hardware architecture and the systems characteristics of the Fraunhofer driving simulator. First, the requirements of the real-time model and the real-time calculation hardware are defined and discussed in detail. Aspects like transport delay and the parallel computation of complex real-time models are presented. In addition, the interfacing of the models with the simulator system is shown. Two simulator driving tests, including a fully interactive rough terrain driving with a wheeled excavator and a test drive with a passenger car, are set to demonstrate system characteristics. Furthermore, the simulator characteristics of practical significance, such as simulator response time delay, simulator acceleration signal bandwidth obtained from artificial excitation and from the simulator driving test, will be presented and discussed.


2011 ◽  
Vol 105-107 ◽  
pp. 685-688 ◽  
Author(s):  
Hong Hao Yin ◽  
Hui Chen ◽  
Zhong Bo Peng

Leakage of ship pipeline system has become a great hidden danger, which affects safe operation of ship and causes environmental pollution. In order to isolate leaking pipeline safely in emergency conditions, Real-time monitoring of ship pipeline system leakage is very important. In this paper, the real-time models of ship isothermal and thermal pipeline were established with a set of equations which is running synchronized with the actual execution pipeline, and the real-time model method was used to monitor ship pipeline system leakage. If the difference between measured values and calculated values is greater than a certain range, pipeline leakage is identified. The location of leakage is calculated based on pressure gradient. Only pressure, flow and temperature of the first and second end of the pipeline were needed, can this method achieve leakage detecting and locating. According to the analysis and verification from the experimental data, this method has high leakage resolution and positioning accuracy.


2018 ◽  
Vol 13 (1) ◽  
pp. 119-125
Author(s):  
Михаил Волхонов ◽  
Mihail Volhonov ◽  
Игорь Зимин ◽  
Igor' Zimin ◽  
Иван Максимов ◽  
...  

In the article, based on the analysis of available sources of information, information on various types of modeling is systematized and presented, an improved classification is proposed according to which one can distinguish: full, incomplete and approximate (in completeness); stochastic and deterministic (by degree of certainty); discrete, discrete-continuous, continuous (by intermittence); static and dynamic (by the change in time); constructive and descriptive (by the presence of controlled variables); functional, information, behavioral (depending on the aspect of modeling); educational, experimental, scientific and technical, game and imitation (in the field of modeling); mental and real (in the form of implementation); the real, depending on the method of implementation, is divided into the natural (scientific experiment, complex tests, production experiment) and physical (in real time, model time and without time); depending on whether the computer is used for mental modeling is divided into computer and non-computer. By the way of realization, the mental is divided into visual (hypothetical, analog and mocked), symbolic (linguistic and sign) and mathematical (situational, cybernetic, structural, analytical, algorithmic and combined). Also, the mathematical, depending on the properties reflected, is divided into geometric, probabilistic and topological. The article presents historical facts related to the stages of the development of modeling. Causes and main directions of development of modeling and direction of human activity are indicated, in which modeling currently performs one of the main roles.


2014 ◽  
Vol 17 (3) ◽  
pp. 83-91
Author(s):  
Uyen Thuy Xuan Phan ◽  
Chambers, Edgar IV ◽  
Padmanabhan, Natarajan ◽  
Alavi, Sajid

Shelf life can be simply defined as the duration of that the food remains acceptable for consumption. Determining shelf life of a product, thus, has become essential in quality control because consumer’s demands for safe and high quality products have increased. Accelerated shelf life testing (ASLT), which subjects the food to environments that are more severe than normal to speed up the deterioration process, has long been used in shelf life studies because it can help make decisions more quickly by minimizing time and it minimizes costs. The criterion used to determine shelf life can be the changes in either physical, chemical, biological or sensory characteristics. This study used sensory descriptive properties as the primary criteria to investigate the validity of using Accelerated Shelf Life Testing (ASLT) to determine shelf life of four extruded fortified blended foods (FBFs) compared to a real time model. The real-time environment was set at 300C and 65% relative humidity, based on the weather in Tanzania, the expected location of product use. The ASLT environment was at 500C and 70% relative humidity based on a Q factor of 2, which was equivalent to a one-week ASLT equals onemonth real time. The samples were evaluated for aroma and flavor by a highly trained descriptive panel for 3 time points in each shelf life model. Among the eighteen attributes tested, rancid and painty were the main sensory criteria to determine the shelf life of the products. The ASLT shelf life predictive model was consistent with the real time shelf life for three of the samples. However, it failed to predict the real time shelf life of the fourth similar sample. This affirms the essential use of real time modeling in shelf life study for a new product, even when an accelerated model has been developed for other similar products in the same category. ASLT testing can still be used, but only for early guidance or after validation.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Priya C ◽  
Lakshmi Ponnnusamy

The aim of this paper is to obtain the mathematical model and the real time model of the Single Input Single Output (SISO) conical tank system. The experimental model is obtained from the open loop response in real time and the transfer function is obtained using the two point method. For the real time model, two different controllers namely Zeigler Nichols tuned PI controller and passivity based controller are designed and tested in simulation and the performance of both the controllers are tested for servo operation and regulatory operation. The designed controllers are tested in Simulation and the response is recorded. The simulation results shows that the Passivity based Controller works better for the spherical tank process.


Sign in / Sign up

Export Citation Format

Share Document