A Model for Simulation of Turbulent Flow With High Free Stream Turbulence Implemented in OpenFOAM

Author(s):  
Hosein Foroutan ◽  
Savas Yavuzkurt

A low Reynolds number k-ε model for simulation of turbulent flow with high free stream turbulence is developed which can successfully predict turbulent kinetic energy profiles, skin friction coefficient and Stanton number under high free stream turbulence. Modifications incorporating the effects of free stream velocity and length scale are applied. These include an additional term in turbulent kinetic energy transport equation, as well as reformulation of the coefficient in turbulent viscosity equation. The present model is implemented in OpenFOAM CFD code and applied together with other well-known versions of low Reynolds number k-ε model in flow and heat transfer calculations in a flat plate turbulent boundary layer. Three different test cases based on the initial values of the free stream turbulence intensity (1%, 6.53% and 25.7%) are considered and models predictions are compared with available experimental data. Results indicate that almost all low Reynolds number k-ε models, including the present model, give reasonably good results for low free stream turbulence intensity case (1%). However, deviations between current k-ε models predictions and data become larger as turbulence intensity increases. Turbulent kinetic energy levels obtained from these models for very high turbulence intensity (25.7%) show as much as 100% underprediction while skin friction coefficient and Stanton number are overpredicted by more than 70%. Applying the present modifications, predictions of skin friction coefficient and Stanton number improve considerably (only 15% and 8% deviations in average for very high free stream turbulence intensity). Turbulent kinetic energy levels are vastly improved within the boundary layer as well. It seems like the new developed model can capture the physics of the high free stream turbulence effects.

2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Hosein Foroutan ◽  
Savas Yavuzkurt

A low-Reynolds number k-ε model for simulation of turbulent flow with high free stream turbulence is developed which can successfully predict turbulent kinetic energy profiles, skin friction coefficient, and Stanton number under high free stream turbulence. Modifications incorporating the effects of free stream velocity and length scale are applied. These include an additional term in turbulent kinetic energy transport equation, as well as reformulation of the coefficient in turbulent viscosity equation. The present model is implemented in OpenFOAM CFD code and applied together with other well-known versions of low-Reynolds number k-ε model in flow and heat transfer calculations in a flat plate turbulent boundary layer. Three different test cases based on the initial values of the free stream turbulence intensity (1%, 6.53%, and 25.7%) are considered and models predictions are compared with available experimental data. Results indicate that almost all low-Reynolds number k-ε models, including the present model, give reasonably good results for low free stream turbulence intensity case (1%). However, deviations between current k-ε models predictions and data become larger as turbulence intensity increases. Turbulent kinetic energy levels obtained from these models for very high turbulence intensity (25.7%) show as much as 100% underprediction while skin friction coefficient and Stanton number are overpredicted by more than 70%. Applying the present modifications, predictions of skin friction coefficient, and Stanton number improve considerably (only 15% and 8% deviations in average for very high free stream turbulence intensity). Turbulent kinetic energy levels are vastly improved within the boundary layer as well. It seems like the new developed model can capture the physics of the high free stream turbulence effects.


Author(s):  
Ganesh R. Iyer ◽  
Savash Yavuzkurt

A modified low-Reynolds number k-ε model for predicting effects of high free stream turbulence (FST) on transport of momentum and heat in a flat plate turbulent boundary layer is presented. An additional production term incorporating the effects of FST intensity (velocity scale) was included in the TKE equation. The constant cμ in the equation for the transport coefficient μt was modified using empirical information. These modifications were applied to two well tested k-ε models (Launder-Sharma and K-Y Chien,) under high FST conditions (initial FST intensity, Tui > 5%). Models were implemented in a two-dimensional boundary layer code. The high FST data sets against which the predictions (in the turbulent region) were compared had initial FST intensities of 6.53% and 25.7%. In a previous paper, it was shown that predictions of the original models became poorer (overprediction upto more than 50% for skin friction coefficient and Stanton number, and underprediction of turbulent kinetic energy (TKE) upto more than 50%) as FST increased to about 26%. In comparison, the new model developed here provided excellent results for TKE in the boundary layer when compared to the data set with Tui = 6.53%. Results for skin friction coefficient and Stanton number were also very good (within 2% of mean experimental data). For the case of data set with Tui = 25.7%, results of skin friction coefficient, Stanton number and TKE have also vastly improved, but still have scope for more improvement. The present model incorporates physics of free stream turbulence in turbulence modeling and provides a new method for simulating flows with high FST. Future work will focus on including length scale effects in the current model to obtain better predictions for the higher intensity case (Tui = 25.7%) and simulate flows typical in gas turbine engine environments.


Author(s):  
Savas Yavuzkurt ◽  
Ganesh R. Iyer

A modified low-Reynolds number k-ε model (named YI-diffn. model) for predicting effects of high free stream turbulence (FST) on momentum transport and heat transfer in a flat plate turbulent boundary layer is presented. An additional turbulent kinetic energy (TKE) diffusion term incorporating the effects of FST intensity (velocity scale) and length scale was included in the TKE equation. This model was developed with experience from many years of experimental and theoretical studies in the area of high FST flows. The constant cμ in the equation for the transport coefficient μt was modified using experimental data. These modifications were applied to a well-tested k-ε model (K-Y Chien called KYC in this study) under high FST conditions (initial FST intensity, Tui > 5%). Models were implemented in a 2-D boundary layer code. The high FST zero pressure gradient data sets against which the predictions (in the turbulent region) were compared had initial FST intensities of 6.53% and 25.7%. In a previous paper, it was shown that predictions of the original k-ε models became poorer (over prediction up to more than 50% for skin friction coefficient and Stanton number, and under prediction of TKE up to more than 50%) as FST increased to about 26%. In comparison, the new model developed here provided excellent results (within ±3% of experimental data) for skin friction coefficient and Stanton number for both the data sets. TKE results were excellent for Tui = 6.53%, but have scope for improvement in the case of Tui = 25.7%. The present model incorporates physics of transport of free stream turbulence in turbulence modeling and provides a new method for simulating flows with high FST. Future work will focus upon improving the model further and applying it to practical applications like flow over gas turbine blades.


1976 ◽  
Vol 98 (3) ◽  
pp. 506-515 ◽  
Author(s):  
V. Ramjee ◽  
A. K. M. F. Hussain

The effect of axisymmetric contractions of a given shape and of contraction ratios c = 11, 22, 44.5, 64, and 100 on the free-stream turbulence of an incompressible flow has been studied experimentally with hot-wires. It is found that the longitudinal and lateral kinetic energies of turbulence increase along the contraction. The monotonic increase of the longitudinal turbulent kinetic energy with increasing c is in contrast with the linear (Batchelor-Proudman-Ribner-Tucker) theory. The variation of the lateral turbulent kinetic energy with c is in qualitative agreement with the theory; however, the increase is much lower than that predicted by the theory. The linear theory overpredicts the decrease in the longitudinal turbulence intensity with increasing c and under-predicts the decrease in the lateral turbulence intensity with increasing c. For the given flow tunnel, it is found that a contraction ratio c greater than about 45 is not greatly effective in reducing longitudinal turbulence levels further; the lateral turbulent intensity continues to decrease with increasing c. In the design of a low turbulence-level tunnel, the panacea for the reduction of the turbulence level does not lie in an indefinite increase of the contraction ratio alone. Studies with various upstream screens and a given contraction of c = 11 suggest that the exit turbulence intensities are essentially independent of the Reynolds number based on the screen-mesh size or screen-wire diameter of the upstream screen.


Author(s):  
Ganesh R. Iyer ◽  
Savash Yavuzkurt

Calculations of the effects of high free stream turbulence (FST) on heat transfer and skin friction in a flat plate turbulent boundary layer using different k-ε models (Launder-Sharma, K-Y Chien, Lam-Bremhorsi and Jones-Launder) are presented. This study was carried out in order to investigate the prediction capabilities of these models under high FST conditions. In doing so, TEXSTAN, a partial differential equation solver which is based on the ideas of Patankar and Spalding and solves steady-flow boundary layer equations, was used. Firstly, these models were compared as to how they predicted very low FST (≤ 1% turbulence intensity) cases. These baseline cases were tested by comparing predictions with both experimental data and empirical correlations. Then, these models were used in order to determine the effect of high FST (>5% turbulence intensity) on heat transfer and skin friction and compared with experimental data. Predictions for heat transfer and skin friction coefficient for all the turbulence intensities tested by all the models agreed well (within 1–8%) with experimental data. However, all these models predicted poorly the dissipation of turbulent kinetic energy (TKE) in the free stream and TKE profiles. Physical reasoning as to why the aforementioned models differ in their predictions and the probable cause of poor prediction of free-stream TKE and TKE profiles are given.


Author(s):  
M. Dellacasagrande ◽  
R. Guida ◽  
D. Lengani ◽  
D. Simoni ◽  
M. Ubaldi ◽  
...  

Experimental data describing laminar separation bubbles developing under strong adverse pressure gradients, typical of Ultra-High-Lift turbine blades, have been analyzed to define empirical correlations able to predict the main features of the separated flow transition. Tests have been performed for three different Reynolds numbers and three different free-stream turbulence intensity levels. For each condition, around 4000 Particle Image Velocimetry (PIV) snapshots have been acquired. A wavelet based intermittency detection technique, able to identify the large scale vortices shed as a consequence of the separation, has been applied to the large amount of data to efficiently compute the intermittency function for the different conditions. The transition onset and end positions, as well as the turbulent spot production rate are evaluated. Thanks to the recent advancements in the understanding on the role played by Reynolds number and free-stream turbulence intensity on the dynamics leading to transition in separated flows, guest functions are proposed in the paper to fit the data. The proposed functions are able to mimic the effects of Reynolds number and free-stream turbulence intensity level on the receptivity process of the boundary layer in the attached part, on the disturbance exponential growth rate observed in the linear stability region of the separated shear layer, as well as on the nonlinear later stage of completing transition. Once identified the structure of the correlation functions, a fitting process with own and literature data allowed us to calibrate the unknown constants. Results reported in the paper show the ability of the proposed correlations to adequately predict the transition process in the case of separated flows. The correlation for the spot production rate here proposed extends the correlations proposed in liter-ature for attached (by-pass like) transition process, and could be used in γ–Reϑ codes, where the spot production rate appears as a source term in the intermittency function transport equation.


2016 ◽  
Vol 801 ◽  
pp. 289-321 ◽  
Author(s):  
Wolfgang Balzer ◽  
H. F. Fasel

The aerodynamic performance of lifting surfaces operating at low Reynolds number conditions is impaired by laminar separation. In most cases, transition to turbulence occurs in the separated shear layer as a result of a series of strong hydrodynamic instability mechanisms. Although the understanding of these mechanisms has been significantly advanced over the past decades, key questions remain unanswered about the influence of external factors such as free-stream turbulence (FST) and others on transition and separation. The present study is driven by the need for more accurate predictions of separation and transition phenomena in ‘real world’ applications, where elevated levels of FST can play a significant role (e.g. turbomachinery). Numerical investigations have become an integral part in the effort to enhance our understanding of the intricate interactions between separation and transition. Due to the development of advanced numerical methods and the increase in the performance of supercomputers with parallel architecture, it has become feasible for low Reynolds number application ($O(10^{5})$) to carry out direct numerical simulations (DNS) such that all relevant spatial and temporal scales are resolved without the use of turbulence modelling. Because the employed high-order accurate DNS are characterized by very low levels of background noise, they lend themselves to transition research where the amplification of small disturbances, sometimes even growing from numerical round-off, can be examined in great detail. When comparing results from DNS and experiment, however, it is beneficial, if not necessary, to increase the background disturbance levels in the DNS to levels that are typical for the experiment. For the current work, a numerical model that emulates a realistic free-stream turbulent environment was adapted and implemented into an existing Navier–Stokes code based on a vorticity–velocity formulation. The role FST plays in the transition process was then investigated for a laminar separation bubble forming on a flat plate. FST was shown to cause the formation of the well-known Klebanoff mode that is represented by streamwise-elongated streaks inside the boundary layer. Increasing the FST levels led to accelerated transition, a reduction in bubble size and better agreement with the experiments. Moreover, the stage of linear disturbance growth due to the inviscid shear-layer instability was found to not be ‘bypassed’.


Author(s):  
Takayuki Matsunuma

Tip clearance losses represent a major efficiency penalty of turbine blades. This paper describes the effect of tip clearance on the aerodynamic characteristics of an unshrouded axial-flow turbine cascade under very low Reynolds number conditions. The Reynolds number based on the true chord length and exit velocity of the turbine cascade was varied from 4.4 × 104 to 26.6 × 104 by changing the velocity of fluid flow. The free-stream turbulence intensity was varied between 0.5% and 4.1% by modifying turbulence generation sheet settings. Three-dimensional flow fields at the exit of the turbine cascade were measured both with and without tip clearance using a five-hole pressure probe. Tip leakage flow generated a large high total pressure loss region. Variations in the Reynolds number and free-stream turbulence intensity changed the distributions of three-dimensional flow, but had no effect on the mass-averaged tip clearance loss of the turbine cascade.


Sign in / Sign up

Export Citation Format

Share Document