Design Parameters of Brush Seals and Their Impact on Seal Performance

Author(s):  
H. Schwarz ◽  
J. Friedrichs ◽  
J. Flegler

Brush seals, which were originally designed for gas turbine applications, have been successfully applied to large-scale steam turbines within the past decade. From gas turbine applications, the fundamental behavior and designing levers are known. However, the application of brush seals to a steam turbine is still a challenge. This challenge is mainly due to the extreme load on the brush seal while operating under steam. Furthermore, it is difficult to test brush seals under realistic conditions, i.e. under live steam conditions with high pressure drops. Due to these insufficiencies, 2 test rigs were developed at the University of Technology Braunschweig, Germany. The first test rig is operated under pressurized air and allows testing specific brush seal characteristics concerning their general behavior. The knowledge gained from these tests can be validated in the second test rig, which is operated under steam at pressure drops of 45 bar and temperatures up to 450 °C. Using both the air test rig and the steam test rig helps keep the testing effort comparably small. Design variants can be pre-tested with air, and promising brush seal designs can consequently be tested in the steam seal test rig. The paper focuses on a clamped brush seal design which, amongst others, is used in steam turbine blade paths and shaft seals of current Siemens turbines. The consequences of the brush assembly on the brush appearance and brush performance are shown. The clamped brush seal design reveals several particularities compared to welded brushes. It could be shown that the clamped bristle pack tends to gape when clamping forces rise. Gapping results in an axially expanding bristle pack, where the bristle density per unit area and the leakage flow vary. Furthermore, the brush elements are usually assembled with an axial lay angle, i.e. the bristles are reclined against the backing plate. Hence, the axial lay angle is also part of the investigation.

Author(s):  
H. Schwarz ◽  
J. Friedrichs

Within this paper a continuation in brush seal testing for flexible load regimes in a steam turbine is given. Besides the well-known main design parameters of brush seals, e.g. the bristle pack thickness, the bristle diameter or the lay angle of the bristle pack, this paper focuses on the axial inclination of the bristle pack and particularly the affinity of bristle pack oscillations at low inclined bristle packs and small pressure differences. As it was presented in GT2014-26330, the axial inclination of the bristle pack is an important design parameter for brush seals. Along with a clearly increased blow-down capability and a reduced stiffness the seals tend to exhibit an enhanced axial bristle pack width during pressurization. It was previously shown that a low axial inclination of the bristle pack results in a loose package and in bristle pack oscillations until pressure differences of 10 bar. Above pressure drops of 10 bar the resulting higher abrasive behavior stops and a well sealing brush seal with a loose bristle pack is given. Regarding the renewable energy sources for necessary changes in steam turbine operations, a flexible sealing system with an enhanced wide operating range is requested. To capture all positive behaviors of low inclined brush seals for pressure differences until 10 bar, a design to safely avoid bristle pack oscillations is required. With this background low inclined brush seals with a new back plate design were tested at the Institute’s cold air test facility in Braunschweig up to a pressure difference of 4 bar. The facility allows detailed sealing performance investigations including real time bristle pack observations. The present paper shows and discusses overall experimental results of brush seals with different axial inclinations mounted with an adjustable back plate to determine the influence of the back plate design on the bristle pack oscillations. Furthermore, these new results together with older measurements from 2012 were used to develop a theory regarding the changes that result from contact between the bristle pack and the adjusted back plate. Finally, the design for a pressure balanced back plate will be shown.


2002 ◽  
Vol 124 (2) ◽  
pp. 293-300 ◽  
Author(s):  
Saim Dinc ◽  
Mehmet Demiroglu ◽  
Norman Turnquist ◽  
Jason Mortzheim ◽  
Gayle Goetze ◽  
...  

Advanced seals have been applied to numerous turbine machines over the last decade to improve the performance and output. Industrial experiences have shown that significant benefits can be attained if the seals are designed and applied properly. On the other hand, penalties can be expected if brush seals are not designed correctly. In recent years, attempts have been made to apply brush seals to more challenging locations with high speed (>400 m/s), high temperature (>650 °C), and discontinuous contact surfaces, such as blade tips in a turbine. Various failure modes of a brush seal can be activated under these conditions. It becomes crucial to understand the physical behavior of a brush seal under the operating conditions, and to be capable of quantifying seal life and performance as functions of both operating parameters and seal design parameters. Design criteria are required for different failure modes such as stress, fatigue, creep, wear, oxidation etc. This paper illustrates some of the most important brush seal design criteria and the trade-off of different design approaches.


Author(s):  
Michael J. Pekris ◽  
Gervas Franceschini ◽  
David R. H. Gillespie

Compliant contacting filament seals such as brush seals are well known to give improved leakage performance and hence specific fuel consumption benefit compared to labyrinth seals. The design of the brush seal must be robust across a range of operating pressures, rotor speeds and radial build-offset tolerances. Importantly the wear characteristics of the seal must be well understood to allow a secondary air system suitable for operation over the entire engine life to be designed. A test rig at the University of Oxford is described which was developed for the testing of brush seals at engine-representative speeds, pressures and seal housing eccentricities. The test rig allows the leakage, torque and temperature rise in the rotor to be characterized as functions of the differential pressure(s) across the seal and the speed of rotation. Tests were run on two different geometries of bristle-pack with conventional, passive and active pressure-balanced backing ring configurations. Comparison of the experimental results indicates that the hysteresis inherent in conventional brush seal design could compromise performance (due to increased leakage) or life (due to exacerbated wear) as a result of reduced compliance. The inclusion of active pressure-balanced backing rings in the seal designs are shown to alleviate the problem of bristle-backing ring friction, but this is associated with increased blow-down forces which could result in a significant seal-life penalty. The best performing seal was concluded to be the passive pressure-balanced configuration, which achieves the best compromise between leakage and seal torque. Seals incorporating passive pressure-balanced backing rings are also shown to have improved heat transfer performance in comparison to other designs.


Author(s):  
M. Raben ◽  
J. Friedrichs ◽  
J. Flegler

Sealing technology is a key feature to improve efficiency of steam turbines for both new power stations and modernization projects. One of the most powerful sealing alternatives for reducing parasitic leakages in the blade path of a turbine as well as in shaft sealing areas is the use of brush seals, which are also widely used in gas turbines and turbo compressors. The advantage of brush seals over other sealing concepts is based on the narrow gap that is formed between the brush seal bristle tips and the mating rotor surface together with its radial adaptivity. While the narrow gap between the bristle tips and the rotor leads to a strongly decreased flow through the seal compared with conventional turbomachinery seals, it is important to be aware of the tight gap that can be bridged by relative motion between the rotor and the brush seal, leading to a contact of the bristles and the rotor surface. Besides abrasive wear occurrence, the friction between the bristles and the rotor leads to heat generation which can be detrimental to turbine operation due to thermal effects, leading to rotor bending connected to increasing shaft vibrations. In order to investigate the frictional heat generation of brush seals, different investigation concepts have been introduced through the past years. To broaden the knowledge about frictional heat generation and to make it applicable for steam turbine applications, a new testing setup was designed for the steam test rig of the Institute of Jet Propulsion and Turbomachinery - TU Braunschweig, Germany, enabling temperature measurements in the rotor body under stationary and transient operation in steam by using rotor-integrated thermocouples. Within this paper, the development of the instrumented new rotor design and all relevant parts of the new testing setup is shown along with the testing ability by means of the validation of the test rig concept and the achieved measurement accuracy. First results prove that the new system can be used to investigate frictional heat generation of brush seals under conditions relevant for steam turbine shaft seals.


Author(s):  
E. Tolga Duran ◽  
Mahmut F. Aksit ◽  
Murat Ozmusul

Brush seals are complex structures having variety of design parameters, all of which affect the seal behavior under turbine operating conditions. The complicated nature of the seal pack and frictional interactions of rotor, backing plate and bristles result in nonlinear response of the brush seal to variances of design parameters. This study presents CAE based characterization of brush seals, which aims to investigate the main effects of several brush seal design parameters on brush seal stiffness and stress levels. Characterization work of this study includes free-state rotor rub (unpressurized seal), steady state (pressure load without rotor interference) and pressurized-rotor interference conditions.


2004 ◽  
Vol 126 (1) ◽  
pp. 208-215 ◽  
Author(s):  
Haifang Zhao ◽  
Robert J. Stango

Brush seals comprised of special-alloy wire bristles are currently being used in lieu of traditional labyrinth seals for turbomachinery applications. This advancement in seal technology utilizes close-packed bristles that readily undergo lateral deformation arising from aerodynamic loads as well as loads imparted by the rotor surface. Thus, during operation, filament tips remain in contact with the rotor surface, which, in turn, inhibits leakage between successive stages of the turbine, and increases engine efficiency. However, contact forces generated at the interface of the rotor and fiber tips can lead to eventual bristle fatigue and wear of the seal/rotor system. Therefore, it is important that reliable modeling techniques be developed that can help identify complex relationships among brush seal design parameters, in-service loads, and contact forces that arise during the operation of turbomachinery. This paper is concerned with modeling and evaluating bristle deformation, bending stress, and bristle/rotor contact forces that are generated at the interface of the fiber and rotor surface due to radial fluid flow, and augments previous work reported by the author’s, which assessed filament tip forces that arise solely due to interference between the bristle/rotor. The current problem derives its importance from aerodynamic forces that are termed “blow-down,” that is, the inward radial flow of gas in close proximity to the face of the seal. Thus, bristle deformation, bristle tip reaction force, and bristle bending stress is computed on the basis of an in-plane, large-displacement mechanics analysis of a cantilever beam that is subjected to a uniform radial load. Solutions to the problem are obtained for which the filament tip is constrained to lie on the rotor surface, and includes the effect of Coulombic friction at the interface of the fiber tip and rotor. Contact forces are obtained for a range of brush seal design parameters including fiber lay angle, flexural rigidity, and length. In addition, the governing equation is cast in non-dimensional form, which extends the range of applicability of solutions to brush seals having a more general geometry and material composition.


Author(s):  
Don Stephen ◽  
Simon I. Hogg

Increased cylinder efficiency is one of the main drivers in the steam turbine retrofit market, particularly for HP and IP modules. To-date most retrofit turbine suppliers have concentrated their efforts on improving the aerodynamic efficiency of blades and other steampath components, optimizing stage numbers and reducing leakage losses. Developments in all of these areas rely heavily on improved design and analysis tools to refine existing designs and evaluate new concepts. The opportunity exists to further reduce leakage losses by replacing conventional labyrinth seal designs by more advanced turbomachinery sealing technology. Brush seals, which have now been used successfully in some gas turbine (mainly aero-engines) applications for several years, are a natural candidate for steam turbine retrofits. Careful thought is needed when applying brush seals as the mechanical integrity of the cylinder needs to be maintained at all times. Attempts to increase performance should never be at the expense of availability and reliability. This paper describes the development work undertaken by the authors’ company and covers research in the areas of brush seal design, performance improvement, operational issues, and life assessment.


Author(s):  
Markus Raben ◽  
Jens Friedrichs ◽  
Johan Flegler

Sealing technology is a key feature to improve efficiency of steam turbines for both new power stations and modernization projects. One of the most powerful sealing alternatives for reducing parasitic leakages in the blade path of a turbine as well as in shaft sealing areas is the use of brush seals, which are also widely used in gas turbines and turbo compressors. The advantage of brush seals over other sealing concepts is based on the narrow gap that is formed between the brush seal bristle tips and the mating rotor surface together with its radial adaptivity. While the narrow gap between the bristle tips and the rotor leads to a strongly decreased flow through the seal compared with conventional turbomachinery seals, it is important to be aware of the tight gap that can be bridged by relative motion between the rotor and the brush seal, leading to a contact of the bristles and the rotor surface. Besides abrasive wear occurrence, the friction between the bristles and the rotor leads to heat generation which can be detrimental to turbine operation due to thermal effects, leading to rotor bending connected to increasing shaft vibrations. In order to investigate the frictional heat generation of brush seals, different investigation concepts have been introduced through the past years. To broaden the knowledge about frictional heat generation and to make it applicable for steam turbine applications, a new testing setup was designed for the steam test rig of the Institute of Jet Propulsion and Turbomachinery—TU Braunschweig, Germany, enabling temperature measurements in the rotor body under stationary and transient operation in steam by using rotor-integrated thermocouples. Within this paper, the development of the instrumented new rotor design and all relevant parts of the new testing setup is shown along with the testing ability by means of the validation of the test rig concept and the achieved measurement accuracy. First results prove that the new system can be used to investigate frictional heat generation of brush seals under conditions relevant for steam turbine shaft seals.


Author(s):  
Saim Dinc ◽  
Mehmet Demiroglu ◽  
Norman Turnquist ◽  
Jason Mortzheim ◽  
Gayle Goetze ◽  
...  

Advanced seals have been applied to numerous turbine machines over the last decade to improve the performance and output. Industrial experiences have shown that significant benefits can be attained if the seals are designed and applied properly. On the other hand, penalties can be expected if brush seals are not designed correctly. In recent years, attempts have been made to apply brush seals to more challenging locations with high speed (>400 m/s), high temperature (>650 °C), and discontinuous contact surfaces, such as blade tips in a turbine. Various failure modes of a brush seal can be activated under these conditions. It becomes crucial to understand the physical behavior of a brush seal under the operating conditions, and to be capable of quantifying seal life and performance as functions of both operating parameters and seal design parameters. Design criteria are required for different failure modes such as stress, fatigue, creep, wear, oxidation etc. This paper illustrates some of the most important brush seal design criteria and the trade-off of different design approaches.


Author(s):  
Michael J. Pekris ◽  
Gervas Franceschini ◽  
David R. H. Gillespie

Compliant contacting filament seals such as brush seals are well known to give improved leakage performance and hence specific fuel consumption benefit compared to labyrinth seals. The design of the brush seal must be robust across a range of operating pressures, rotor speeds, and radial build-offset tolerances. Importantly the wear characteristics of the seal must be well understood to allow a secondary air system suitable for operation over the entire engine life to be designed. A test rig at the University of Oxford is described which was developed for the testing of brush seals at engine-representative speeds, pressures, and seal housing eccentricities. The test rig allows the leakage, torque, and temperature rise in the rotor to be characterized as functions of the differential pressure(s) across the seal and the speed of rotation. Tests were run on two different geometries of bristle pack with conventional, passive, and active pressure-balanced backing ring configurations. Comparison of the experimental results indicates that the hysteresis inherent in conventional brush seal design could compromise performance (due to increased leakage) or life (due to exacerbated wear) as a result of reduced compliance. The inclusion of active pressure-balanced backing rings in the seal designs are shown to alleviate the problem of bristle–backing ring friction, but this is associated with increased blow-down forces which could result in a significant seal-life penalty. The best performing seal was concluded to be the passive pressure-balanced configuration, which achieves the best compromise between leakage and seal torque. Seals incorporating passive pressure-balanced backing rings are also shown to have improved heat transfer performance in comparison to other designs.


Sign in / Sign up

Export Citation Format

Share Document