Effect of Flow-Induced Radial Load on Brush Seal/Rotor Contact Mechanics

2004 ◽  
Vol 126 (1) ◽  
pp. 208-215 ◽  
Author(s):  
Haifang Zhao ◽  
Robert J. Stango

Brush seals comprised of special-alloy wire bristles are currently being used in lieu of traditional labyrinth seals for turbomachinery applications. This advancement in seal technology utilizes close-packed bristles that readily undergo lateral deformation arising from aerodynamic loads as well as loads imparted by the rotor surface. Thus, during operation, filament tips remain in contact with the rotor surface, which, in turn, inhibits leakage between successive stages of the turbine, and increases engine efficiency. However, contact forces generated at the interface of the rotor and fiber tips can lead to eventual bristle fatigue and wear of the seal/rotor system. Therefore, it is important that reliable modeling techniques be developed that can help identify complex relationships among brush seal design parameters, in-service loads, and contact forces that arise during the operation of turbomachinery. This paper is concerned with modeling and evaluating bristle deformation, bending stress, and bristle/rotor contact forces that are generated at the interface of the fiber and rotor surface due to radial fluid flow, and augments previous work reported by the author’s, which assessed filament tip forces that arise solely due to interference between the bristle/rotor. The current problem derives its importance from aerodynamic forces that are termed “blow-down,” that is, the inward radial flow of gas in close proximity to the face of the seal. Thus, bristle deformation, bristle tip reaction force, and bristle bending stress is computed on the basis of an in-plane, large-displacement mechanics analysis of a cantilever beam that is subjected to a uniform radial load. Solutions to the problem are obtained for which the filament tip is constrained to lie on the rotor surface, and includes the effect of Coulombic friction at the interface of the fiber tip and rotor. Contact forces are obtained for a range of brush seal design parameters including fiber lay angle, flexural rigidity, and length. In addition, the governing equation is cast in non-dimensional form, which extends the range of applicability of solutions to brush seals having a more general geometry and material composition.

2003 ◽  
Vol 125 (2) ◽  
pp. 414-421 ◽  
Author(s):  
R. J. Stango ◽  
H. Zhao ◽  
C. Y. Shia

Brush seals have proven to be an attractive alternative to labyrinth seals for turbomachinery applications. This innovation in seal technology utilizes both the high temperature capability of special-alloy wire and the flexural adaptability of fibers to accommodate a wide range of operating conditions that are encountered during service. The effectiveness of the seal is principally derived from the bristles ability to endure forces imparted by both the fluid and shaft, and yet maintain contact between the filament tips and the surface of the rotor. Consequently, contact forces generated along the interface of the fiber tip and rotor are an important consideration for both the design and performance of the rotor-seal assembly. This paper focuses on evaluating brush seal forces that arise along the surface of the rotor due to the dimensional disparity or interference between the rotor-fiber. Filament tip contact forces are computed on the basis of an in-plane, large deformation mechanics analysis of a cantilever beam, and validation of the model is assessed by using an electronic balance for measuring the shear and normal force exerted by a bristle tip onto a flat, hardened surface. Formulation of the mechanics problem is briefly reviewed, and includes the effect of Coulombic friction at the interface of the fiber tip and rotor. Filament contact force is used as a basis for computing bearing stress along the fiber-rotor interface. Results are reported for a range of brush seal design parameters in order to provide a better understanding of the role that seal geometry, friction, and bristle flexural rigidity play in generating rotor contact force.


Author(s):  
H. Schwarz ◽  
J. Friedrichs ◽  
J. Flegler

Brush seals, which were originally designed for gas turbine applications, have been successfully applied to large-scale steam turbines within the past decade. From gas turbine applications, the fundamental behavior and designing levers are known. However, the application of brush seals to a steam turbine is still a challenge. This challenge is mainly due to the extreme load on the brush seal while operating under steam. Furthermore, it is difficult to test brush seals under realistic conditions, i.e. under live steam conditions with high pressure drops. Due to these insufficiencies, 2 test rigs were developed at the University of Technology Braunschweig, Germany. The first test rig is operated under pressurized air and allows testing specific brush seal characteristics concerning their general behavior. The knowledge gained from these tests can be validated in the second test rig, which is operated under steam at pressure drops of 45 bar and temperatures up to 450 °C. Using both the air test rig and the steam test rig helps keep the testing effort comparably small. Design variants can be pre-tested with air, and promising brush seal designs can consequently be tested in the steam seal test rig. The paper focuses on a clamped brush seal design which, amongst others, is used in steam turbine blade paths and shaft seals of current Siemens turbines. The consequences of the brush assembly on the brush appearance and brush performance are shown. The clamped brush seal design reveals several particularities compared to welded brushes. It could be shown that the clamped bristle pack tends to gape when clamping forces rise. Gapping results in an axially expanding bristle pack, where the bristle density per unit area and the leakage flow vary. Furthermore, the brush elements are usually assembled with an axial lay angle, i.e. the bristles are reclined against the backing plate. Hence, the axial lay angle is also part of the investigation.


2002 ◽  
Vol 124 (2) ◽  
pp. 293-300 ◽  
Author(s):  
Saim Dinc ◽  
Mehmet Demiroglu ◽  
Norman Turnquist ◽  
Jason Mortzheim ◽  
Gayle Goetze ◽  
...  

Advanced seals have been applied to numerous turbine machines over the last decade to improve the performance and output. Industrial experiences have shown that significant benefits can be attained if the seals are designed and applied properly. On the other hand, penalties can be expected if brush seals are not designed correctly. In recent years, attempts have been made to apply brush seals to more challenging locations with high speed (>400 m/s), high temperature (>650 °C), and discontinuous contact surfaces, such as blade tips in a turbine. Various failure modes of a brush seal can be activated under these conditions. It becomes crucial to understand the physical behavior of a brush seal under the operating conditions, and to be capable of quantifying seal life and performance as functions of both operating parameters and seal design parameters. Design criteria are required for different failure modes such as stress, fatigue, creep, wear, oxidation etc. This paper illustrates some of the most important brush seal design criteria and the trade-off of different design approaches.


Author(s):  
E. Tolga Duran ◽  
Mahmut F. Aksit ◽  
Murat Ozmusul

Brush seals are complex structures having variety of design parameters, all of which affect the seal behavior under turbine operating conditions. The complicated nature of the seal pack and frictional interactions of rotor, backing plate and bristles result in nonlinear response of the brush seal to variances of design parameters. This study presents CAE based characterization of brush seals, which aims to investigate the main effects of several brush seal design parameters on brush seal stiffness and stress levels. Characterization work of this study includes free-state rotor rub (unpressurized seal), steady state (pressure load without rotor interference) and pressurized-rotor interference conditions.


2006 ◽  
Vol 129 (1) ◽  
pp. 199-204 ◽  
Author(s):  
H. Zhao ◽  
R. J. Stango

Brush seals comprised of closely packed fine-diameter wires are an important innovation in seal technology for turbo-machinery. During service, brush seal bristles are subjected to a complex system of forces that are associated with various working loads including—but not limited to—aerodynamic forces, bristle tip∕rotor contact force, and interbristle interactions. The latter interactions are associated with contact forces that are exerted onto a bristle by adjacent fibers, as both forces and displacements are transmitted throughout the fibrous network. Such interbristle contact forces can be represented as uniformly distributed loads along the lateral surface of the fiber, or as applied discrete loads at various locations along the bristle length. In this paper, the role that uniformly distributed interbristle friction force plays in brush seal hysteresis is examined and reported. The origin of this frictional load is attributed to conjugate interbristle shear forces that arise due to compaction and aggregate displacement of the bristle pack during service. This, in turn, gives rise to a uniformly distributed internal micromoment that resists bending deformation. Numerical studies are reported for a brush seal whose bristle tips are subjected to rotor induced loading that is associated with bristle∕rotor interference or eccentric rotation of the shaft. In order to extend the range of applicability of numerical solutions, results are reported in terms of nondimensional brush seal design parameters. Results indicated that interbristle friction force can give rise to a delayed filament displacement as well as an incomplete bending recovery of bristles. The latter phenomenon can inevitably result in hysteretic “gapping,” i.e., the formation of an annular or crescent space between the rotor and bristle tips, thereby increasing vulnerability of the seal to leakage.


Author(s):  
Saim Dinc ◽  
Mehmet Demiroglu ◽  
Norman Turnquist ◽  
Jason Mortzheim ◽  
Gayle Goetze ◽  
...  

Advanced seals have been applied to numerous turbine machines over the last decade to improve the performance and output. Industrial experiences have shown that significant benefits can be attained if the seals are designed and applied properly. On the other hand, penalties can be expected if brush seals are not designed correctly. In recent years, attempts have been made to apply brush seals to more challenging locations with high speed (>400 m/s), high temperature (>650 °C), and discontinuous contact surfaces, such as blade tips in a turbine. Various failure modes of a brush seal can be activated under these conditions. It becomes crucial to understand the physical behavior of a brush seal under the operating conditions, and to be capable of quantifying seal life and performance as functions of both operating parameters and seal design parameters. Design criteria are required for different failure modes such as stress, fatigue, creep, wear, oxidation etc. This paper illustrates some of the most important brush seal design criteria and the trade-off of different design approaches.


2021 ◽  
Author(s):  
Neelesh Sarawate ◽  
Deepak Trivedi

Abstract Brush seals are widely used in various turbomachinery applications because they provide reduced leakage than labyrinth seals in a compact space. Brush seals are generally mounted on static components and their flexible bristle tips engage the rotor to form a dynamic seal. In this paper, development of a brush seal mounted on a rotor is discussed. Benefits of this enhancement to brush seal include avoiding localized rubs on the rotor, which reduces heating of a local spot and resulting rotor bow and instabilities. The bristles are angled circumferentially instead of axially and are supported by a conical backplate. Under rotation, the bristles are pushed towards the backplate by the centrifugal force. Seal configurations are designed to fit into interstage and inter-shaft locations. A modeling approach for predicting stiffness and operating stresses in these seals also is outlined. A test setup is developed to characterize the performance of rotating brush seals under engine-representative centrifugal force and pressure differentials. Presented results demonstrate that brush seal can achieve tight effective gaps and desired performance after undergoing initial wear.


Author(s):  
Peter Helm ◽  
Alexander Pugachev ◽  
Matthias Neef

Striving for smaller losses in turbomachinery has led to many advancements in the design of seals. Modern sealing concepts such as brush seals hold a great potential to increase the efficiency of both flight engines and stationary turbines. At the same time, in order to maintain stable operating conditions of the rotor, swirl-induced forces must be kept at a minimum in the sealing channels. Therefore, the influence of the permeable and flexible bristle pack of brush seals on the flow around the rotor surface must be known. In this paper the swirl flow in the cavities of two different seal geometries is studied experimentally and numerically. A conventional three-tooth labyrinth serves as a reference. A second seal arrangement with a bristle pack upstream of two teeth is compared with the reference labyrinth. The swirl is evaluated experimentally from total and static pressure measurements in various axial and circumferential positions. Additionally, the axial swirl distribution is calculated using computational fluid dynamics (CFD). Here, the numerical model of the brush seal is based on the porous medium approach and is calibrated using the experimental values of the leakage and the bristle clearance by adjusting the thickness of the bristle pack. The calibrated CFD model is then used to study the impact of the brush seal on the swirl component of the sealing flow. The observed significant decrease of the swirl by the brush seal shows good agreement with the experimental data. The impact of changes in bristle pack clearance on the swirl is also investigated and compared with experimental evidence. The aim is to show that the brush seals have a natural tendency to interrupt seal swirl. They can therefore be used for swirl control in order to create a beneficial impact on the dynamic stability of turbomachines.


Author(s):  
Yahya Dogu ◽  
Ahmet S. Bahar ◽  
Mustafa C. Sertçakan ◽  
Altuğ Pişkin ◽  
Ercan Arıcan ◽  
...  

Brush seals require custom design and tailoring due to their behavior driven by flow dynamic, which has many interacting design parameters, as well as their location in challenging regions of turbomachinery. Therefore, brush seal technology has not reached a conventional level across the board standard. However, brush seal geometry generally has a somewhat consistent form. Since this consistent form does exist, knowledge of the leakage performance of brush seals depending on specific geometric dimensions and operating conditions is critical and predictable information in the design phase. However, even though there are common facts for some geometric dimensions available to designers, open literature has inadequate quantified information about the effect of brush seal geometric dimensions on leakage. This paper presents a detailed computational fluid dynamics (CFD) investigation quantifying the leakage values for some geometric variables of common brush seal forms functioning in some operating conditions. Analyzed parameters are grouped as follows: axial dimensions, radial dimensions, and operating conditions. The axial dimensions and their ranges are front plate thickness (z1 = 0.040–0.150 in.), distance between front plate and bristle pack (z2 = 0.010–0.050 in.), bristle pack thickness (z3 = 0.020–0.100 in.), and backing plate thickness (z4 = 0.040–0.150 in.). The radial dimensions are backing plate fence height (r1 = 0.020–0.100 in.), front plate fence height (r2 = 0.060–0.400 in.), and bristle free height (r3 = 0.300–0.500 in.). The operating conditions are chosen as clearance (r0 = 0.000–0.020 in.), pressure ratio (Rp = 1.5–3.5), and rotor speed (n = 0–40 krpm). CFD analysis was carried out by employing compressible turbulent flow in 2D axisymmetric coordinate system. The bristle pack was treated as a porous medium for which flow resistance coefficients were calibrated by using literature based test data. Selected dimensional and operational parameters for a common brush seal form were investigated, and their effects on leakage performance were quantified. CFD results show that, in terms of leakage, the dominant geometric dimensions were found to be the bristle pack thickness and the backing plate fence height. It is also clear that physical clearance dominates leakage performance, when compared to the effects of other geometric dimensions. The effects of other parameters on brush seal leakage were also analyzed in a comparative manner.


Author(s):  
D. Pfefferle ◽  
K. Dullenkopf ◽  
H.-J. Bauer

Brush seals play an increasing role in turbomachinery due to their improved behavior towards leakage and their capability to compensate for gap variations caused by thermal expansion and rotor excursions. The flexible bristles of brush seals are able to endure short-term reductions in gap width without severe damage. Consequently the necessary gap between the rotor and brush seal can virtually be reduced to zero, leading to a considerable reduction in air leakage of up to 80 percent. However the reduced gap height increases the probability of rubbing between the bristle package and the rotor surface. The friction forces generated can cause an unwanted heat load on the rotor, bristles and leakage air. In addition, the surfaces involved are exposed to abrasion effects. Especially in the thin and lightweight rotor structures of aircraft engines, the additional heat impact can lead to a problematic level of material stress. To study these effects and to give reliable quantitative design rules, a versatile test rig for brush seals was designed and built. The simulation of seal behavior under relevant engine conditions is the main emphasis of this rig, including high pressure drop, leakage flow and high surface speed. The key feature is the possibility to vary the axis symmetric radial gap width during the test rig operation by up to a 0.5 mm overlap. The so caused rubbing induces a transient rotor temperature rise which is measured via a set of 12 thermocouples embedded in the rotor. These temperature readings can be used to calculate the brush seal heat impact on the rotor structure. Preliminary results with moderate differential pressure and rotor speed proved the functionality of the test rig and confirmed the global approach of the project.


Sign in / Sign up

Export Citation Format

Share Document