Study on Transient Vibration of Mistuned Bladed Disk Passing Through Resonance

Author(s):  
Yasutomo Kaneko

In a variable speed engine, it is impossible to avoid the resonance during operation. In a constant speed engine, the resonance during start-up or shut-down also cannot be avoided. Therefore, the increase of the acceleration rate in passing through the resonance has been considered as one of the effective methods for reducing the vibratory stress of the blade and increasing the reliability of the turbomachinery. In this study, the transient vibration analysis of the mistuned bladed disk passing through the resonance is carried out, using the conventional modal analysis method and the numerical integration method. First, the mistuned bladed disk is modeled by the equivalent spring-mass model, and the steady frequency response analysis is carried out by the Monte Carlo simulation, in order to obtain the worst mistuning pattern. Second, for the mistuned bladed disk of the worst mistuning pattern, the transient vibration analysis in passing through the resonance is carried out, and the effect of the acceleration rate and the blade damping on the transient vibration response is examined in detail. From these results, it is concluded that the larger the acceleration rate is, the smaller the mistuning effect is.


Author(s):  
Yasutomo Kaneko

Blades with a friction damper have been used in a steam turbine and a gas turbine to improve the blade reliability. In particular, for a gas turbine blade of the upstream stage, under-platform dampers have been widely used, where the damper pieces with various geometries are inserted into the platforms of the adjacent blades. The damper piece is designed so that its surface contacts the platform surface uniformly. However, the contact conditions of the damper piece (in other words, the equivalent stiffness and the damping caused by the damper piece) may change appreciably blade by blade because of the likes of manufacturing tolerance, blade deformation in operation, and wear of the damper piece. Therefore, it is essential to consider the mistuning effect caused by the variation of the contact condition of the damper piece in evaluating the vibration response of the bladed disk with the under-platform damper. In this study, a mistuned bladed disk with under-platform dampers is represented by the equivalent spring-mass model. Frequency response analysis and random response analysis are carried out using the direct method and Monte Carlo simulation. Carrying out an extensive parametric study, the effect of the variation of the contact condition caused by the damper piece on the vibration response of the bladed disk is clarified.



Author(s):  
Christian Siewert ◽  
Heinrich Stüer

It is well-known that the vibrational behavior of a mistuned bladed disk differs strongly from that of a tuned bladed disk. A large number of publications dealing with the dynamics of mistuned bladed disks is available in the literature. The vibrational phenomena analyzed in these publications are either forced vibrations or self-excited flutter vibrations. Nearly all published literature on the forced vibrations of mistuned blades disks considers harmonic, i. e. steady-state, vibrations, whereas the self-excited flutter vibrations are analyzed by the evaluation of the margin against instabilities by means of a modal, or rather than eigenvalue, analysis. The transient forced response of mistuned bladed disk is not analyzed in detail so far. In this paper, a computationally efficient mechanical model of a mistuned bladed disk to compute the transient forced response is presented. This model is based on the well-known Fundamental Model of Mistuning. With this model, the statistics of the transient forced response of a mistuned bladed disk is analyzed and compared to the results of harmonic forced response analysis.



Author(s):  
Y. Kaneko ◽  
K. Mori ◽  
H. Ohyama ◽  
E. Watanabe

For the purpose of the efficient analysis of a mistuned bladed disk system, a new analysis method which applies the substructure synthesis method and the modal analysis method is proposed. Using the proposed method, the vibrational characteristics of the grouped blades structure are studied. From the results, it is found that the grouped blades structure is very sensitive to the mistuning. It is also found that the mixed grouped blades structure (a bladed disk system consisting of some different types of grouped blades relating to the number of blades contained) has an undesirable effect on the forced response. Moreover, by comparing the vibrational characteristics of the integral shroud blades (ISB) structure with those of the grouped blades structure, it is clarified that the reliability of the ISB structure is superior to other structures also from the viewpoint of the mistuning.



2017 ◽  
Vol 2017 (0) ◽  
pp. J0330305
Author(s):  
Kazuhisa INAGAKI ◽  
Hayato SHIDA ◽  
Mami NAGATAKE


Sign in / Sign up

Export Citation Format

Share Document