Effects of Jet-to-Target Plate Distance and Reynolds Number on Jet Array Impingement Heat Transfer

Author(s):  
Junsik Lee ◽  
Zhong Ren ◽  
Jacob Haegele ◽  
Geoff Potts ◽  
Jae Sik Jin ◽  
...  

Data which illustrate the effects of jet-to-target plate distance and Reynolds number on the heat transfer from an array of jets impinging on a flat plate are presented. Considered are Reynolds numbers Rej ranging from 8,200, to 52,000, with isentropic jet Mach numbers of approximately 0.1 to 0.2. Jet-to-target plate distances Z of 1.5D, 3.0D, 5.0D, and 8.0D are employed, where D is the impingement hole diameter. Steamwise and spanwise hole spacings are 8D. Local and spatially-averaged Nusselt numbers show strong dependence on the impingement jet Reynolds number for all situations examined. Experimental results also illustrate the dependence of local Nusselt numbers on normalized jet-to-target plate distance, especially for smaller values of this quantity. The observed variations are partially due to accumulating cross-flows produced as the jets advect downstream, as well as the interactions of the vortex structures which initially form around the jets, and then impact and interact as they advect away from stagnation points along the impingement target surface. The highest spatially-averaged Nusselt numbers are present for Z/D = 3.0 for Rej of 8,200, 20,900, and 30,000. When Rej = 52,000, spatially-averaged Nusselt numbers increase as Z/D decreases, with the highest value present at Z/D = 1.5.

2013 ◽  
Vol 136 (5) ◽  
Author(s):  
Junsik Lee ◽  
Zhong Ren ◽  
Jacob Haegele ◽  
Geoffrey Potts ◽  
Jae Sik Jin ◽  
...  

Data which illustrate the effects of jet-to-target plate distance and Reynolds number on the heat transfer from an array of jets impinging on a flat plate are presented. Considered are Reynolds numbers Rej ranging from 8200 to 52,000 with isentropic jet Mach numbers of approximately 0.1 to 0.2. Jet-to-target plate distances Z of 1.5D, 3.0D, 5.0D, and 8.0D are employed, where D is the impingement hole diameter. Streamwise and spanwise hole spacings are 8D. Local and spatially-averaged Nusselt numbers show strong dependence on the impingement jet Reynolds number for all situations examined. Experimental results also illustrate the dependence of local Nusselt numbers on normalized jet-to-target plate distance, especially for smaller values of this quantity. The observed variations are partially due to accumulating cross-flows produced as the jets advect downstream, as well as the interactions of the vortex structures, which initially form around the jets and then impact and interact as they advect away from stagnation points along the impingement target surface. The highest spatially-averaged Nusselt numbers are present for Z/D = 3.0 for Rej of 8200, 20,900, and 30,000. When Rej = 52,000, spatially-averaged Nusselt numbers increase as Z/D decreases, with the highest value present at Z/D = 1.5.


Author(s):  
Matt Goodro ◽  
Jongmyung Park ◽  
Phil Ligrani ◽  
Mike Fox ◽  
Hee-Koo Moon

Data which illustrate the effects of hole spacing on the heat transfer from an array of jets impinging on a flat plate are presented. Considered are Reynolds numbers ranging from 8200, to 30500, and Mach numbers from 0.1 to 0.2. The spacing of the holes used to produce the impinging jets is either 8D or 12D in both the streamwise and spanwise directions. Local and spatially-averaged Nusselt numbers show strong dependence on the impingement jet Reynolds number for both situations. Experimental results show that local Nusselt numbers show some dependence on the Mach number for the smaller jet hole spacing, with negligible dependence for the larger jet hole spacing. This is partially a result of the accumulating cross-flows produced by the jets, as well as the interactions of the vortex structures which initially form around the jets, and then impact and interact as they advect away from stagnation points along the impingement target surface. Spatially-averaged Nusselt numbers generally decrease as x/D increases when hole spacing is 8D, whereas Nusselt numbers are generally about constant as x/D increases when hole spacing is 12D. This is partially due to cross-flow effects, as well as behavior of each jet in the array, which is similar to that of a single, isolated jet for the larger hole spacing. Spatially-averaged Nusselt numbers for 8D jet hole spacing are also often higher than values for the 12D jet hole spacing when compared at the same x/D location.


2014 ◽  
Vol 348 ◽  
pp. 162-170
Author(s):  
Pey Shey Wu ◽  
Yi Hung Lin ◽  
Yue Hua Jhuo ◽  
Hsiao Ying Chan

Impingement heat transfer between a circular jet and a semi-spherical concave surface with or without coverage of porous material is investigated experimentally and numerically. For cases with coverage of the porous material on the target plate, a trapping hole for the jet fluid is fabricated. Measured local Nusselt number distributions along a meridian are documented. The flow and temperature fields at the conditions similar to that of experiments were computed with CFD software to support the experimental results and help to explain the physics. Varying parameters include Reynolds number, nozzle-to-plate distance, relative curvature, and a target surface with or without the covered porous material. Results show that the attachment of a porous material increases Nusselt number, with more influence at the stagnation zone than the far field. Increasing Reynolds number usually increases Nusselt number unless it is too high. Although an increase in the nozzle-to-plate distance decreases stagnation Nusselt number, the influence in heat transfer is small in the far field. The trapping-hole diameter should be the same as that of the jet diameter for best heat transfer enhancement.


Author(s):  
Junsik Lee ◽  
Zhong Ren ◽  
Phil Ligrani ◽  
Michael D. Fox ◽  
Hee-Koo Moon

Data which illustrate the combined and separate effects of hole array spacing, jet-to-target plate distance, and Reynolds number on cross-flows, and the resulting heat transfer, for an impingement jet array are presented. The array of impinging jets are directed to one flat surface of a channel which is bounded on three sides. Considered are Reynolds numbers ranging from 8,000 to 50,000, jet-to-target plate distances of 1.5D, 3.0D, 5.0D, and 8.0D, and steamwise and spanwise hole spacing of 5D, 8D, and 12D, where D is the impingement hole diameter. In general, the cumulative accumulations of cross-flows, from sequential rows of jets, reduce the effectiveness of each individual jet (especially for jets at larger streamwise locations). The result is sequentially decreasing periodic Nusselt number variations with streamwise development, which generally become more significant as the Reynolds number increases, and as hole spacing decreases. In other situations, the impingement cross-flow results in locally augmented Nusselt numbers. Such variations most often occur at larger downstream locations, as jet interactions are more vigorous, and local magnitudes of mixing and turbulent transport are augmented. This occurs in channels at lower Reynolds numbers, where impingement jets are confined by smaller hole spacing, and smaller jet-to-target plate distance. The overall result is complex dependence of local, line-averaged, and spatially-averaged Nusselt numbers on hole array spacing, jet-to-target plate distance, and impingement jet Reynolds number. Of particular importance are the effects of these parameters on the coherence of the shear layers which form around the impingement jets, as well as on the Kelvin-Helmholtz instability vortices which develop within the shear interface around each impingement jet.


Author(s):  
Xunfeng Lu ◽  
Weihong Li ◽  
Xueying Li ◽  
Jing Ren ◽  
Hongde Jiang

In the current research of impingement on pin-fin wall, researchers mainly pay attention to macro pin-fin due to the limitation of manufacture. With the development of additive manufacturing, it is possible to manufacture the micro pin-fin. Hence, impingement on micro pin-fin wall becomes a new cooling technique that has attracted the researchers’ attention. With experimental methodology, the investigation utilizes different jet to target distance, micro pin-fin shapes, height and Reynolds number for impingement cooling augmentation to illustrate the effects on jet array impingement heat transfer. The area-averaged target surface heat transfer coefficient distributions are measured with lumped capacitance method. The impingement hole diameter (D) is 4 millimeter, with streamwise and spanwise jet-to-jet spacing 4D. Considered are effects of jet to target plate distance (Z/D:0.75,3), micro pin-fin shapes (rectangle, pentahedron), and pin-fin height (h/D:0.05,0.2,0.4). In total, ten different test surfaces are considered (smooth surface included). Tests are performed at impingement jet Reynolds numbers from 2000 to 10000 for configuration of Z/D = 0.75, from 5000–20000 for configuration of Z/D = 3. The experimental results illustrate that there are significant heat transfer augmentation (30%–120% more than baseline flow condition) with micro pin-fin on impingement target surface, and discharge coefficient is almost the same.


1999 ◽  
Vol 122 (2) ◽  
pp. 375-385 ◽  
Author(s):  
C. R. Hedlund ◽  
P. M. Ligrani

Local flow behavior and heat transfer results are presented from two swirl chambers, which model passages used to cool the leading edges of turbine blades in gas turbine engines. Flow results are obtained in an isothermal swirl chamber. Surface Nusselt number distributions are measured in a second swirl chamber (with a constant wall heat flux boundary condition) using infrared thermography in conjunction with thermocouples, energy balances, and in situ calibration procedures. In both cases, Reynolds numbers Re based on inlet duct characteristics range from 6000 to about 20,000. Bulk helical flow is produced in each chamber by two inlets, which are tangent to the swirl chamber circumference. Important changes to local and globally averaged surface Nusselt numbers, instantaneous flow structure from flow visualizations, and distributions of static pressure, total pressure, and circumferential velocity are observed throughout the swirl chambers as the Reynolds number increases. Of particular importance are increases of local surface Nusselt numbers (as well as ones globally averaged over the entire swirl chamber surface) with increasing Reynolds number. These are tied to increased advection, as well as important changes to vortex characteristics near the concave surfaces of the swirl chambers. Higher Re also give larger axial components of velocity, and increased turning of the flow from each inlet, which gives Go¨rtler vortex pair trajectories greater skewness as they are advected downstream of each inlet. [S0889-504X(00)00502-X]


2021 ◽  
Author(s):  
Lorenzo Cocchi ◽  
Alessio Picchi ◽  
Bruno Facchini ◽  
Riccardo Da Soghe ◽  
Lorenzo Mazzei ◽  
...  

Abstract The goal of the present work is to investigate the effect of supply pipe position on the heat transfer features of various active clearance control (ACC) geometries, characterized by different jet-to-jet distances. All geometries present 0.8 mm circular impingement holes arranged in a single row. The jets generated by such holes cool a flat target surface, which is replicated by a metal plate in the experimental setup. Measurements are performed using the steady-state technique, obtained by heating up the target plate thanks to an electrically heated Inconel foil applied on the side of the target opposite to the jets. Temperature is also measured on this side by means of an IR camera. Heat transfer is then evaluated thanks to a custom designed finite difference procedure, capable of solving the inverse conduction problem on the target plate. The effect of pipe positioning is studied in terms of pipe-to-target distance (from 3 to 11 jet diameters) and pipe orientation (i.e. rotation around its axis, from 0° to 40° with respect to target normal direction), while the investigated jet Reynolds numbers range from 6000 to 10000. The obtained results reveal that heat transfer is maximized for a given pipe-to-target distance, dependent on both jet-to-jet distance and target surface extension. Pipe rotation also affects the cooling features in a non-monotonic way, suggesting the existence of different flow regimes related to jet inclination.


Author(s):  
C. R. Hedlund ◽  
P. M. Ligrani

Local flow behavior and heat transfer results are presented from two swirl chambers, which model passages used to cool the leading edges of turbine blades in gas turbine engines. Flow results are obtained in an isothermal swirl chamber. Surface Nusselt number distributions are measured in a second swirl chamber (with a constant wall beat flux boundary condition) using infrared thermography, in conjunction with thermocouples, energy balances, and in situ calibration procedures. In both cases, Reynolds numbers Re based on inlet duct characteristics range from 6000 to about 20000. Bulk helical flow is produced in each chamber by two inlets which ore tangent to the swirl chamber circumference. Important changes to local and globally-averaged surface Nusselt numbers, instantaneous flow structure from flow visualizations, and distributions of static pressure, total pressure, and circumferential velocity are observed throughout the swirl chambers as the Reynolds number increases. Of particular importance are increases of local surface Nusselt numbers (as well as ones globally-averaged over the entire swirl chamber surface) with increasing Reynolds number. These are tiad to increased advection, as well as important changes to vortex characteristics near the concave surfaces of the swirl chambers. Higher Re also give larger axial components of velocity, and increased turning of the flow from each inlet, which gives Görtler vnrtex pair trajectories greater skewness as they are advected downstream of each inlet.


Author(s):  
Zhong Ren ◽  
Sneha Reddy Vanga ◽  
Nathan Rogers ◽  
Phil Ligrani ◽  
Keith Hollingsworth ◽  
...  

The present study provides new heat transfer data for both the surfaces of the full coverage effusion cooling plate within a double wall cooling test facility. To produce the cooling stream, a cold-side cross-flow supply for the effusion hole array is employed. Also utilized is a unique mainstream mesh heater, which provides transient thermal boundary conditions, after mainstream flow conditions are established. For the effusion cooled surface, presented are spatially-resolved distributions of surface adiabatic film cooling effectiveness, and surface heat transfer coefficients (measured using infrared thermography). For the coolant side, presented are spatially-resolved distributions of surface Nusselt numbers (measured using liquid crystal thermography). Of interest are the effects of streamwise development, blowing ratio, and Reynolds number. Streamwise hole spacing and spanwise hole spacing (normalized by effusion hole diameter) on the effusion plate are 15 and 4, respectively. Effusion hole diameter is 6.35 mm, effusion hole angle is 25 degrees, and effusion plate thickness is 3 hole diameters. Considered are overall effusion blowing ratios from 2.9 to 7.5, with subsonic, incompressible flow, and constant freestream velocity with streamwise development, for two different mainstream Reynolds numbers. For the hot side (mainstream) of the effusion film cooling test plate, results for two mainflow Reynolds numbers of about 145000 and 96000 show that the adiabatic cooling effectiveness is generally higher for the lower Reynolds number for a particular streamwise location and blowing ratio. The heat transfer coefficient is generally higher for the low Reynolds number flow. This is due to altered supply passage flow behavior, which causes a reduction in coolant lift-off of the film from the surface as coolant momentum, relative to mainstream momentum, decreases. For the coolant side of the effusion test plate, Nusselt numbers generally increase with blowing ratio, when compared at a particular streamwise location and mainflow Reynolds number.


Author(s):  
Patricia Streufert ◽  
Terry X. Yan ◽  
Mahdi G. Baygloo

Local turbulent convective heat transfer from a flat plate to a circular impinging air jet is numerically investigated. The jet-to-plate distance (L/D) effect on local heat transfer is the main focus of this study. The eddy viscosity V2F turbulence model is used with a nonuniform structured mesh. Reynolds-Averaged Navier-Stokes equations (RANS) and the energy equation are solved for axisymmetric, three-dimensional flow. The numerical solutions obtained are compared with published experimental data. Four jet-to-plate distances, (L/D = 2, 4, 6 and 10) and seven Reynolds numbers (Re = 7,000, 15,000, 23,000, 50,000, 70,000, 100,000 and 120,000) were parametrically studied. Local and average heat transfer results are analyzed and correlated with Reynolds number and the jet-to-plate distance. Results show that the numerical solutions matched experimental data best at low jet-to-plate distances and lower Reynolds numbers, decreasing in ability to accurately predict the heat transfer as jet-to-plate distance and Reynolds number was increased.


Sign in / Sign up

Export Citation Format

Share Document