Impingement Cooling of a Semi-Spherical Concave Surface Covered by Porous Medium with a Jet Trapping Hole

2014 ◽  
Vol 348 ◽  
pp. 162-170
Author(s):  
Pey Shey Wu ◽  
Yi Hung Lin ◽  
Yue Hua Jhuo ◽  
Hsiao Ying Chan

Impingement heat transfer between a circular jet and a semi-spherical concave surface with or without coverage of porous material is investigated experimentally and numerically. For cases with coverage of the porous material on the target plate, a trapping hole for the jet fluid is fabricated. Measured local Nusselt number distributions along a meridian are documented. The flow and temperature fields at the conditions similar to that of experiments were computed with CFD software to support the experimental results and help to explain the physics. Varying parameters include Reynolds number, nozzle-to-plate distance, relative curvature, and a target surface with or without the covered porous material. Results show that the attachment of a porous material increases Nusselt number, with more influence at the stagnation zone than the far field. Increasing Reynolds number usually increases Nusselt number unless it is too high. Although an increase in the nozzle-to-plate distance decreases stagnation Nusselt number, the influence in heat transfer is small in the far field. The trapping-hole diameter should be the same as that of the jet diameter for best heat transfer enhancement.

Author(s):  
Junsik Lee ◽  
Zhong Ren ◽  
Jacob Haegele ◽  
Geoff Potts ◽  
Jae Sik Jin ◽  
...  

Data which illustrate the effects of jet-to-target plate distance and Reynolds number on the heat transfer from an array of jets impinging on a flat plate are presented. Considered are Reynolds numbers Rej ranging from 8,200, to 52,000, with isentropic jet Mach numbers of approximately 0.1 to 0.2. Jet-to-target plate distances Z of 1.5D, 3.0D, 5.0D, and 8.0D are employed, where D is the impingement hole diameter. Steamwise and spanwise hole spacings are 8D. Local and spatially-averaged Nusselt numbers show strong dependence on the impingement jet Reynolds number for all situations examined. Experimental results also illustrate the dependence of local Nusselt numbers on normalized jet-to-target plate distance, especially for smaller values of this quantity. The observed variations are partially due to accumulating cross-flows produced as the jets advect downstream, as well as the interactions of the vortex structures which initially form around the jets, and then impact and interact as they advect away from stagnation points along the impingement target surface. The highest spatially-averaged Nusselt numbers are present for Z/D = 3.0 for Rej of 8,200, 20,900, and 30,000. When Rej = 52,000, spatially-averaged Nusselt numbers increase as Z/D decreases, with the highest value present at Z/D = 1.5.


2013 ◽  
Vol 136 (5) ◽  
Author(s):  
Junsik Lee ◽  
Zhong Ren ◽  
Jacob Haegele ◽  
Geoffrey Potts ◽  
Jae Sik Jin ◽  
...  

Data which illustrate the effects of jet-to-target plate distance and Reynolds number on the heat transfer from an array of jets impinging on a flat plate are presented. Considered are Reynolds numbers Rej ranging from 8200 to 52,000 with isentropic jet Mach numbers of approximately 0.1 to 0.2. Jet-to-target plate distances Z of 1.5D, 3.0D, 5.0D, and 8.0D are employed, where D is the impingement hole diameter. Streamwise and spanwise hole spacings are 8D. Local and spatially-averaged Nusselt numbers show strong dependence on the impingement jet Reynolds number for all situations examined. Experimental results also illustrate the dependence of local Nusselt numbers on normalized jet-to-target plate distance, especially for smaller values of this quantity. The observed variations are partially due to accumulating cross-flows produced as the jets advect downstream, as well as the interactions of the vortex structures, which initially form around the jets and then impact and interact as they advect away from stagnation points along the impingement target surface. The highest spatially-averaged Nusselt numbers are present for Z/D = 3.0 for Rej of 8200, 20,900, and 30,000. When Rej = 52,000, spatially-averaged Nusselt numbers increase as Z/D decreases, with the highest value present at Z/D = 1.5.


2000 ◽  
Vol 123 (2) ◽  
pp. 347-358 ◽  
Author(s):  
P. Bagchi ◽  
M. Y. Ha ◽  
S. Balachandar

Direct numerical solution for flow and heat transfer past a sphere in a uniform flow is obtained using an accurate and efficient Fourier-Chebyshev spectral collocation method for Reynolds numbers up to 500. We investigate the flow and temperature fields over a range of Reynolds numbers, showing steady and axisymmetric flow when the Reynolds number is less than 210, steady and nonaxisymmetric flow without vortex shedding when the Reynolds number is between 210 and 270, and unsteady three-dimensional flow with vortex shedding when the Reynolds number is above 270. Results from three-dimensional simulation are compared with the corresponding axisymmetric simulations for Re>210 in order to see the effect of unsteadiness and three-dimensionality on heat transfer past a sphere. The local Nusselt number distribution obtained from the 3D simulation shows big differences in the wake region compared with axisymmetric one, when there exists strong vortex shedding in the wake. But the differences in surface-average Nusselt number between axisymmetric and three-dimensional simulations are small owing to the smaller surface area associated with the base region. The shedding process is observed to be dominantly one-sided and as a result axisymmetry of the surface heat transfer is broken even after a time-average. The one-sided shedding also results in a time-averaged mean lift force on the sphere.


Author(s):  
Bo Su ◽  
Wei-jiang Xu ◽  
Zhi-ping Li ◽  
Tian-liang Zhou ◽  
Fei Lu

Abstract In this paper, the heat transfer performance of single jet impinging conical surface is investigated based on transient liquid crystal experiments. Because of different target surface structures, impingement heat transfer will have different heat transfer characteristics. In order to better understand the heat transfer mechanism of the impinging conical target surface, this paper studies the three jet Reynolds number (Re) ranged from 25000 to 70000, three the dimensionless nozzle-to-surface distance (H/D) from 0.75 to 6 on heat transfer characteristics. The liquid crystal thermal imaging technology is used in the experiment to obtain the heat transfer efficiency of jet heat transfer on the conical target surface. The research in this paper shows that the larger the jet Reynolds number, the larger the Nusselt number at the stagnation point. It is worth noting that the maximum Nusselt number is not necessarily obtained at the stagnation point. When Re = 70000 and H/D = 0.75, the maximum value of the Nusselt number is 1.24 times the stagnation point. The larger the Reynolds number, the smaller the impingement distance, and the more obvious the secondary maxima. At the same impingement distance, when the Reynolds number is larger, the position of the secondary maxima appears earlier. When Re = 25000, H/D = 3.5, 6 and Re = 45000, H/D = 6, the local Nusselt number monotonously decreases from the maximum value at the stagnation point along the flow, and it appears secondary maxima in other experimental conditions. Within the scope of this study, the overall heat transfer performance is better when the dimensionless distance between the jet hole and the target surface is 3.5.


Author(s):  
Xunfeng Lu ◽  
Weihong Li ◽  
Xueying Li ◽  
Jing Ren ◽  
Hongde Jiang

In the current research of impingement on pin-fin wall, researchers mainly pay attention to macro pin-fin due to the limitation of manufacture. With the development of additive manufacturing, it is possible to manufacture the micro pin-fin. Hence, impingement on micro pin-fin wall becomes a new cooling technique that has attracted the researchers’ attention. With experimental methodology, the investigation utilizes different jet to target distance, micro pin-fin shapes, height and Reynolds number for impingement cooling augmentation to illustrate the effects on jet array impingement heat transfer. The area-averaged target surface heat transfer coefficient distributions are measured with lumped capacitance method. The impingement hole diameter (D) is 4 millimeter, with streamwise and spanwise jet-to-jet spacing 4D. Considered are effects of jet to target plate distance (Z/D:0.75,3), micro pin-fin shapes (rectangle, pentahedron), and pin-fin height (h/D:0.05,0.2,0.4). In total, ten different test surfaces are considered (smooth surface included). Tests are performed at impingement jet Reynolds numbers from 2000 to 10000 for configuration of Z/D = 0.75, from 5000–20000 for configuration of Z/D = 3. The experimental results illustrate that there are significant heat transfer augmentation (30%–120% more than baseline flow condition) with micro pin-fin on impingement target surface, and discharge coefficient is almost the same.


Author(s):  
Cuicui Liu ◽  
Zeyi Jiang ◽  
Xinxin Zhang ◽  
Qiang Ma ◽  
Yusheng Sun

Mathematical model combining theoretical analysis approach and differential numerical solving techniques has been set up to predict the free surface water jet impingement heat transfer. Heat transfer properties are obtained and validated by comparison with experiments. The characteristic of Nu-r/d distribution is discussed and the effect of nozzle diameter is analyzed. In addition, nozzle arrangements are studied for water jet equipment designation purpose. The results show that: Reynolds number is the dominate parameter in Nu-r/d distribution and area-averaged Nusselt number increases with increasing nozzle diameter. The best heat transfer effect appears when the aspect ratio of rectangular surface equals to 1. Fewer nozzles and bigger single impinged area could get larger Nusselt number under a given total water flow rate and given total impinged area. At a constant flow rate, larger nozzle diameter and smaller Reynolds number present a larger Nusselt number.


Author(s):  
Sandesh S. Chougule ◽  
Mayank Modak ◽  
Prajakta D. Gharge ◽  
S. K. Sahu

In present study, an experimental investigation has been carried out to analyze the heat transfer characteristics of CuO-water nanofluids jets on a hot surface. A rectangular stainless steel foil (AISI-304, 0.15 mm thick) is used as a test surface is electrically heated to obtain the required initial temperature. The distribution of heat flux on the target surface is evaluated from the recorded thermal images during transient cooling. The effect of nanoparticle concentration and Reynolds number of the nanofluids jet impingement heat transfer characteristics is studied. Tests were performed for an initial surface temperature of 500°C, Reynolds number (5000≤Re≤13000), CuO-water nanofluids concentration (Φ= 0.15%, 0.6%) and nozzle to plate distance was l/d= 4.


2016 ◽  
Vol 138 (12) ◽  
Author(s):  
C. Neil Jordan ◽  
Lesley M. Wright ◽  
Daniel C. Crites

Jet impingement is often employed within the leading edge of turbine airfoils to combat the heat loads incurred within this region. This experimental investigation employs a transient liquid crystal technique to obtain detailed Nusselt number distributions on a concave, cylindrical surface that models the leading edge of a turbine airfoil. The effect of hole shape and differing hole inlet and exit conditions are investigated. Two hole shapes are studied: cylindrical and racetrack-shaped holes; for each hole shape, the hydraulic diameter and mass flow rate into the array of jets is conserved. As a result, the jet's Reynolds number varies between the two jet arrays. Reynolds numbers of 13,600, 27,200, and 40,700 are investigated for the cylindrical holes, and Reynolds numbers of 11,500, 23,000, and 34,600 are investigated for the racetrack holes. Three inlet and exit conditions are investigated for each hole shape: a square edged, a partially filleted, and a fully filleted hole. The ratio of the fillet radius to hole hydraulic diameter is set at 0.25 and 0.667 for the partially and fully filleted holes, respectively, while all other geometrical features remain constant. Results show the Nusselt number is directly related to the Reynolds number for both cylindrical and racetrack-shaped holes. The racetrack holes are shown to provide enhanced heat transfer compared to the cylindrical holes. The degree of filleting at the inlet and outlet of the holes affects whether the heat transfer on the leading edge model is further enhanced or degraded.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Weihong Li ◽  
Minghe Xu ◽  
Jing Ren ◽  
Hongde Jiang

Comprehensive impingement heat transfer coefficients data are presented with varied Reynolds number, hole spacing, jet-to-target distance, and hole inclination utilizing transient liquid crystal. The impingement configurations include: streamwise and spanwise jet-to-jet spacing (X/D, Y/D) are 4∼8 and jet-to-target plate distance (Z/D) is 0.75∼3, which composed a test matrix of 36 different geometries. The Reynolds numbers vary between 5,000 and 25,000. Additionally, hole inclination pointing to the upstream direction (θ: 0 deg∼40 deg) is also investigated to compare with normal impingement jets. Local and averaged heat transfer coefficients data are presented to illustrate that (1) surface Nusselt numbers increase with streamwise development for low impingement distance, while decrease for large impingement distance. The increase or decrease variations are also influenced by Reynolds number, streamwise and spanwise spacings. (2) Nusselt numbers of impingement jets with inclined angle are similar to those of normal impingement jets. Due to the increase or decrease variations corresponding to small or large impingement distance, a two-regime-based correlation, based on that of Florschuetz et al., is developed to predict row-averaged Nusselt number. The new correlation is capable to cover low Z/D∼0.75 and presents better prediction of row-averaged Nusselt number, which proves to be an effective impingement design tool.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Mayank Modak ◽  
Sandesh S. Chougule ◽  
Santosh K. Sahu

In the present study, an experimental investigation has been carried out to analyze the heat transfer characteristics of CuO–water nanofluids jet on a hot surface. A rectangular stainless steel foil (AISI-304, 0.15 mm thick) used as the test surface is electrically heated to obtain the required initial temperature (500 °C). The distribution of surface heat flux on the target surface is evaluated from the recorded thermal images during transient cooling. The effect of nanoparticle concentration and Reynolds number of the nanofluids on the heat transfer characteristics is studied. Tests are performed for varied range of Reynolds number (5000 ≤ Re ≤ 12,000), two different CuO–water nanofluids concentration (Ф = 0.15%, 0.6%) and two different nozzle to plate distance (l/d = 6, 12). The enhancement in Nusselt number for CuO–water nanofluids was found to be 14% and 90%, for nanofluids concentration of Ф = 0.15% and Ф = 0.60%, respectively, compared to pure water. The test surface characteristics after nanofluids jet impingement are studied using scanning electron microscope (SEM). Based on the investigation, a correlation among various parameters, namely, Reynolds number (Re), Prandtl number (Pr), nozzle to plate distance (l/d), and Nusselt number (Nu), is presented.


Sign in / Sign up

Export Citation Format

Share Document