Large Eddy Simulation of Rotating Ribbed Channel

Author(s):  
Rémy Fransen ◽  
Laurence Vial ◽  
Laurent Y. M. Gicquel

Large Eddy Simulation (LES) of isothermal flow in stationary and wall-normal rotating blade internal cooling system is evaluated against experimental data. The studied case is a 3D one wall ribbed straight channel for which time resolved two-dimensional Particle Image Velocimetry (PIV) measurements have been performed at the Von Karman Institute (VKI) in a near gas turbine operating condition. Thanks to these experimental mean and time-resolved quantities, advanced numerical computations can be adequately evaluated. In this work LES results show that this high fidelity CFD model is able to reproduce the turbulence increase (decrease) around the rib in destabilizing (stabilizing) rotation of the ribbed channel. Such effects are not only captured at the mean level but also at the unsteady level as confirmed by the comparison of the LES large-scale coherent motions with these obtained by PIV.

Author(s):  
Martin Wosnik ◽  
Qiao Qin ◽  
Damien T. Kawakami ◽  
Roger E. A. Arndt

A Large Eddy Simulation (LES) approach for cavitating flow, based on a virtual single-phase, fully compressible cavitation model which includes the effects of incondensable gas, has been shown to be capable of capturing the complex dynamical features of highly unsteady cavitating flows of two-dimensional hydrofoils. Here the LES results are compared to Time-Resolved Particle Image Velocimetry (TR-PIV) in the wake of a cavitating NACA 0015 hydrofoil, with particular attention to the predicted vortex shedding mechanisms. Despite some difficulty with obtaining vector fields from vortical clouds of vaporous-gaseous bubbles with cross-correlation techniques, the initial results seem promising in that they confirm the existence of a primary vortex pair (type A-B). In addition to TR-PIV, the cavitation cloud shedding was also documented with phase-locked, time-resolved photography and high speed volume-illuminated video, both with simultaneous imaging of side and plan views of the foil. All three experimental techniques confirm the need for fully three-dimensional simulations to properly describe the unsteady, three-dimensional cavitation cloud shedding mechanism.


2020 ◽  
pp. 146808742093459 ◽  
Author(s):  
Insuk Ko ◽  
Federico Rulli ◽  
Stefano Fontanesi ◽  
Alessandro d’Adamo ◽  
Kyoungdoug Min

Large-eddy simulation has been increasingly applied to internal combustion engine flows because of their improved potential to capture the spatial and temporal evolution of turbulent flow structures compared with Reynolds-averaged Navier Stokes simulation. Furthermore, large-eddy simulation is universally recognized as capable of simulating highly unsteady and random phenomena, which drive cycle-to-cycle variability and cycle-resolved events such as knocks and misfires. To identify large-scale structure fluctuations, many methods have been proposed in the literature. This article describes the application of several analysis methods for the comparison between different datasets (experimental or numerical) and the identification of large-structure fluctuations. The reference engine is the well-known TCC-III single-cylinder optical unit from the University of Michigan and GM Global R&D center; the analyses were carried out under motored engine conditions. A deep analysis of in-cylinder gas dynamics and flow structure evolution was performed by comparing the experimental results (particle image velocimetry of the velocity fields) with a dataset of consecutive large-eddy simulation cycles on four different cutting planes at engine-relevant crank angle positions. Phase-dependent proper orthogonal decomposition was used to obtain further conclusions regarding the accuracy of the simulation results and to apply conditional averaging methods. A two-point correlation and an analysis of the tumble center are proposed. Finally, conclusions are drawn to be used as guidelines in future large-eddy simulation analyses of internal combustion engines.


Author(s):  
James Tyacke ◽  
Paul Tucker

Large-Eddy Simulation and hybrid RANS-LES methods are applied to a turbine blade ribbed internal duct with a 180 degree bend containing 24 pairs of ribs. Flow and heat transfer predictions are compared with experimental data and found to be in agreement. The choice of LES model is found to be of minor importance as the flow is dominated by large geometric scale structures. The influence of inlet turbulence is also tested and has a minor impact due to the strong turbulence generated by the ribs. Large scale turbulent motions destroy any classical boundary layer reducing near wall grid requirements. The wake-type flow structure makes this and similar flows nearly Reynolds number independent, allowing a range of flows to be studied at similar cost. Hence LES is a relatively cheap method for obtaining accurate heat transfer predictions in these types of flows.


2005 ◽  
Vol 4 (1-2) ◽  
pp. 93-115 ◽  
Author(s):  
Jérôme Boudet ◽  
Nathalie Grosjean ◽  
Marc C. Jacob

A large-eddy simulation is carried out on a rod-airfoil configuration and compared to an accompanying experiment as well as to a RANS computation. A NACA0012 airfoil (chord c = 0.1 m) is located one chord downstream of a circular rod (diameter d = c/10, Red = 48 000). The computed interaction of the resulting sub-critical vortex street with the airfoil is assessed using averaged quantities, aerodynamic spectra and proper orthogonal decomposition (POD) of the instantaneous flow fields. Snapshots of the flow field are compared to particle image velocimetry (PIV) data. The acoustic far field is predicted using the Ffowcs Williams & Hawkings acoustic analogy, and compared to the experimental far field spectra. The large-eddy simulation is shown to accurately represent the deterministic pattern of the vortex shedding that is described by POD modes 1 & 2 and the resulting tonal noise also compares favourably to measurements. Furthermore higher order POD modes that are found in the PIV data are well predicted by the computation. The broadband content of the aerodynamic and the acoustic fields is consequently well predicted over a large range of frequencies ([0 kHz; 10 kHz]).


2017 ◽  
Vol 17 (11) ◽  
pp. 7261-7276 ◽  
Author(s):  
Tobias Wolf-Grosse ◽  
Igor Esau ◽  
Joachim Reuder

Abstract. Street-level urban air pollution is a challenging concern for modern urban societies. Pollution dispersion models assume that the concentrations decrease monotonically with raising wind speed. This convenient assumption breaks down when applied to flows with local recirculations such as those found in topographically complex coastal areas. This study looks at a practically important and sufficiently common case of air pollution in a coastal valley city. Here, the observed concentrations are determined by the interaction between large-scale topographically forced and local-scale breeze-like recirculations. Analysis of a long observational dataset in Bergen, Norway, revealed that the most extreme cases of recurring wintertime air pollution episodes were accompanied by increased large-scale wind speeds above the valley. Contrary to the theoretical assumption and intuitive expectations, the maximum NO2 concentrations were not found for the lowest 10 m ERA-Interim wind speeds but in situations with wind speeds of 3 m s−1. To explain this phenomenon, we investigated empirical relationships between the large-scale forcing and the local wind and air quality parameters. We conducted 16 large-eddy simulation (LES) experiments with the Parallelised Large-Eddy Simulation Model (PALM) for atmospheric and oceanic flows. The LES accounted for the realistic relief and coastal configuration as well as for the large-scale forcing and local surface condition heterogeneity in Bergen. They revealed that emerging local breeze-like circulations strongly enhance the urban ventilation and dispersion of the air pollutants in situations with weak large-scale winds. Slightly stronger large-scale winds, however, can counteract these local recirculations, leading to enhanced surface air stagnation. Furthermore, this study looks at the concrete impact of the relative configuration of warmer water bodies in the city and the major transport corridor. We found that a relatively small local water body acted as a barrier for the horizontal transport of air pollutants from the largest street in the valley and along the valley bottom, transporting them vertically instead and hence diluting them. We found that the stable stratification accumulates the street-level pollution from the transport corridor in shallow air pockets near the surface. The polluted air pockets are transported by the local recirculations to other less polluted areas with only slow dilution. This combination of relatively long distance and complex transport paths together with weak dispersion is not sufficiently resolved in classical air pollution models. The findings have important implications for the air quality predictions over urban areas. Any prediction not resolving these, or similar local dynamic features, might not be able to correctly simulate the dispersion of pollutants in cities.


2011 ◽  
Vol 47 (9) ◽  
pp. 1197-1208 ◽  
Author(s):  
G. H. Yeoh ◽  
S. C. P. Cheung ◽  
J. Y. Tu ◽  
T. J. Barber

2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Puxuan Li ◽  
Steve J. Eckels ◽  
Garrett W. Mann ◽  
Ning Zhang

The setup of inlet conditions for a large eddy simulation (LES) is a complex and important problem. Normally, there are two methods to generate the inlet conditions for LES, i.e., synthesized turbulence methods and precursor simulation methods. This study presents a new method for determining inlet boundary conditions of LES using particle image velocimetry (PIV). LES shows sensitivity to inlet boundary conditions in the developing region, and this effect can even extend into the fully developed region of the flow. Two kinds of boundary conditions generated from PIV data, i.e., steady spatial distributed inlet (SSDI) and unsteady spatial distributed inlet (USDI), are studied. PIV provides valuable field measurement, but special care is needed to estimate turbulent kinetic energy and turbulent dissipation rate for SSDI. Correlation coefficients are used to analyze the autocorrelation of the PIV data. Different boundary conditions have different influences on LES, and their advantages and disadvantages for turbulence prediction and static pressure prediction are discussed in the paper. Two kinds of LES with different subgrid turbulence models are evaluated: namely dynamic Smagorinsky–Lilly model (Lilly model) and wall modeled large eddy simulation (WMLES model). The performances of these models for flow prediction in a square duct are presented. Furthermore, the LES results are compared with PIV measurement results and Reynolds-stress model (RSM) results at a downstream location for validation.


Sign in / Sign up

Export Citation Format

Share Document