Three Dimensional Flow Field in a Highly Loaded Compressor Cascade

Author(s):  
Christian Beselt ◽  
Mario Eck ◽  
Dieter Peitsch

Within the present paper a detailed experimental investigation is presented. The influence of blade loading on the development and interaction of secondary flow structures within an annular compressor stator cascade is examined. Experimental results at 3% chord hub clearance were obtained at four different blade loadings. Included are blade and endwall flow visualization, time resolved measurements of the static pressure on the endwall and radial-circumferential hot-wire traverse measurements within the passage as well as five-hole probe traverse measurements at the inlet and the outlet of the passage. The experimentally obtained results give detailed insight on the effect of the incidence on the development and interaction of the clearance vortex, horse-shoe vortex and the passage vortex. Furthermore it will be shown that a vortex breakdown of the clearance vortex occurs at higher loadings.

2014 ◽  
Vol 136 (10) ◽  
Author(s):  
Ch. Beselt ◽  
M. Eck ◽  
D. Peitsch

Within the present paper, a detailed experimental investigation is presented. The influence of blade loading on the development and interaction of secondary flow structures within an annular compressor stator cascade (CSC) is examined. Experimental results at 3% chord hub clearance were obtained at four different blade loadings. Included are blade and endwall flow visualization, time resolved measurements of the static pressure on the endwall and radial–circumferential hot-wire traverse measurements within the passage as well as five-hole probe traverse measurements at the inlet and the outlet of the passage. The experimentally obtained results give detailed insight on the effect of the incidence on the development and interaction of the clearance vortex, horseshoe vortex, and the passage vortex. Furthermore, it will be shown that a vortex breakdown of the clearance vortex occurs at higher loadings.


Author(s):  
Weilin Yi ◽  
Lucheng Ji

Three-dimensional flow separations commonly occur in the corner region formed by the blade suction surface and end wall in compressors. How to control or reduce these separations is a vital problem for aerodynamic designers all the time. Blended blade and end wall contouring technology has been proposed to control flow separation for several years and validated in many cases using the numerical method, but experimental data was not obtained so far. So in this paper, the baseline cascade scaling from the NACA65 airfoil with 42° turning angle is designed, tested, and analyzed firstly. Then, based on the experimental results of the baseline cascade, blended blade and end wall contouring is applied to the suction surface and hub corner region of the baseline cascade and the detailed experiment is carried out. The results show that the blended blade and end wall contouring technology can decrease the total pressure loss by 8% and 7% at 0° and +10° incidence angles separately. The improved span range mainly focuses on the 10–25% span height. The rolling change of the passage vortex influenced by the accumulation of low energy fluid driven by cross flow in the hub corner should be the main reason for the performance improvement.


Author(s):  
Jo¨rg Weidenfeller ◽  
Martin Lawerenz

In order to identify unsteady flow phenomena this paper presents experimental investigations inside an isolated compressor cascade under off-design conditions. The results of extensive time resolved measurements, which were performed by piezo-resistive pressure sensors and hot wire anemometry show an interaction of aerodynamic and acoustic mechanisms. For a certain operating range the measurements indicate, that vortices, caused by boundary layer separations, oscillate with the pipe mode of the test section. In addition so-called rotating instabilities occur at high blade loading. They rotate with 48% of the circumferential component of the inlet velocity.


Author(s):  
Chuang Jin ◽  
Giovanni Coco ◽  
Rafael O. Tinoco ◽  
Pallav Ranjan ◽  
Jorge San Juan ◽  
...  

2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Juan Du ◽  
Feng Lin ◽  
Jingyi Chen ◽  
Chaoqun Nie ◽  
Christoph Biela

Numerical simulations are carried out to investigate flow structures in the tip region for an axial transonic rotor, with careful comparisons with the experimental results. The calculated performance curve and two-dimensional (2D) flow structures observed at casing, such as the shock wave, the expansion wave around the leading edge, and the tip leakage flow at peak efficiency and near-stall points, are all captured by simulation results, which agree with the experimental data well. An in-depth analysis of three-dimensional flow structures reveals three features: (1) there exists an interface between the incoming main flow and the tip leakage flow, (2) in this rotor the tip leakage flows along the blade chord can be divided into at least two parts according to the blade loading distribution, and (3) each part plays a different role on the stall inception mechanism in the leakage flow dominated region. A model of three-dimensional flow structures of tip leakage flow is thus proposed accordingly. In the second half of this paper, the unsteady features of the tip leakage flows, which emerge at the operating points close to stall, are presented and validated with experiment observations. The numerical results in the rotor relative reference frame are first converted to the casing absolute reference frame before compared with the measurements in experiments. It is found that the main frequency components of simulation at absolute reference frame match well with those measured in the experiments. The mechanism of the unsteadiness and its significance to stability enhancement design are then discussed based on the details of the flow field obtained through numerical simulations.


2011 ◽  
Vol 332-334 ◽  
pp. 260-263
Author(s):  
Shi Rui Liu

In the paper the structure of the compact spinning with pneumatic groove is introduced and the characteristics of three-dimensional flow field of the compact spinning with pneumatic groove are also investigated. Results from this research confirmed that In the compact zone, the air flows to the groove and enters the inner hollow of the slot-roller through the round holes, and the air on both sides of the groove condenses to the center of it and flows to the round holes; It is beneficial to compact the fiber and make the fiber slip to the bottom of the groove with shrink shape; the velocity and negative pressure are both not homogeneous, as the round holes are not continual, and the gradient of static pressure and velocity in compact zones are also perceptible.


1963 ◽  
Vol 16 (4) ◽  
pp. 620-632 ◽  
Author(s):  
D. J. Maull ◽  
L. F. East

The flow inside rectangular and other cavities in a wall has been investigated at low subsonic velocities using oil flow and surface static-pressure distributions. Evidence has been found of regular three-dimensional flows in cavities with large span-to-chord ratios which would normally be considered to have two-dimensional flow near their centre-lines. The dependence of the steadiness of the flow upon the cavity's span as well as its chord and depth has also been observed.


Sign in / Sign up

Export Citation Format

Share Document