Experimental investigation on the performance of compressor cascade using blended-blade-end-wall contouring technology

Author(s):  
Weilin Yi ◽  
Lucheng Ji

Three-dimensional flow separations commonly occur in the corner region formed by the blade suction surface and end wall in compressors. How to control or reduce these separations is a vital problem for aerodynamic designers all the time. Blended blade and end wall contouring technology has been proposed to control flow separation for several years and validated in many cases using the numerical method, but experimental data was not obtained so far. So in this paper, the baseline cascade scaling from the NACA65 airfoil with 42° turning angle is designed, tested, and analyzed firstly. Then, based on the experimental results of the baseline cascade, blended blade and end wall contouring is applied to the suction surface and hub corner region of the baseline cascade and the detailed experiment is carried out. The results show that the blended blade and end wall contouring technology can decrease the total pressure loss by 8% and 7% at 0° and +10° incidence angles separately. The improved span range mainly focuses on the 10–25% span height. The rolling change of the passage vortex influenced by the accumulation of low energy fluid driven by cross flow in the hub corner should be the main reason for the performance improvement.

Author(s):  
Bo Wang ◽  
Yanhui Wu ◽  
Kai Liu

Driven by the need to control flow separations in highly loaded compressors, a numerical investigation is carried out to study the control effect of wavy blades in a linear compressor cascade. Two types of wavy blades are studied with wavy blade-A having a sinusoidal leading edge, while wavy blade-B having pitchwise sinusoidal variation in the stacking line. The influence of wavy blades on the cascade performance is evaluated at incidences from −1° to +9°. For the wavy blade-A with suitable waviness parameters, the cascade diffusion capacity is enhanced accompanied by the loss reduction under high incidence conditions where 2D separation is the dominant flow structure on the suction surface of the unmodified blade. For well-designed wavy blade-B, the improvement of cascade performance is achieved under low incidence conditions where 3D corner separation is the dominant flow structure on the suction surface of the baseline blade. The influence of waviness parameters on the control effect is also discussed by comparing the performance of cascades with different wavy blade configurations. Detailed analysis of the predicted flow field shows that both the wavy blade-A and wavy blade-B have capacity to control flow separation in the cascade but their control mechanism are different. For wavy blade-A, the wavy leading edge results in the formation of counter-rotating streamwise vortices downstream of trough. These streamwise vortices can not only enhance momentum exchange between the outer flow and blade boundary layer, but also act as the suction surface fence to hamper the upwash of low momentum fluid driven by cross flow. For wavy blade-B, the wavy surface on the blade leads to a reduction of the cross flow upwash by influencing the spanwise distribution of the suction surface static pressure and guiding the upwash flow.


Author(s):  
Yangwei Liu ◽  
Hao Yan ◽  
Lipeng Lu

AbstractThe complex flow structures in a linear compressor cascade have been investigated under different incidences using both the Reynolds-averaged Navier–Stokes (RANS) and delayed detached eddy simulation (DDES) methods. The current study analyzes the development of horseshoe vortex and passage vortex in a compressor cascade based on DDES results and explores the effect of the passage vortex on corner separation using the RANS method. Results show that the effect of horseshoe vortex on three-dimensional corner separation is weak, whereas the effect of passage vortex is dominant. A large vortex breaks into many small vortices in the corner separation region, thereby resulting in strong turbulence fluctuation. The passage vortex transports the low-energetic flow near the endwall to the blade suction surface and enlarges corner separation in the cascade. Hence, total pressure loss increases in the cascade.


Author(s):  
Shun Kang ◽  
Ch. Hirsch

Experimental data measured upstream, inside and downstream of a large scale linear compressor cascade with NACA 65-1810 blade profile are presented. The flow is surveyed at 15 traverse planes with 14 (in half span) × 24 (in pitch) points inside a passage, and 14 × 33 points downstream exit plane. The measurements are obtained with a small size five hole probe, and wall static pressure taps. It is observed that the three dimensional flow inside and behind the cascade is characterized, not only by the conventional aspects, such as leading edge horseshoe vortices, passage vortices, trailing edge vortex sheet and corner vortices, but also by two spiral node points, formed from the three dimensional separation lines, on suction surface, and the resulting concentrated vortices.


Author(s):  
Christian Beselt ◽  
Mario Eck ◽  
Dieter Peitsch

Within the present paper a detailed experimental investigation is presented. The influence of blade loading on the development and interaction of secondary flow structures within an annular compressor stator cascade is examined. Experimental results at 3% chord hub clearance were obtained at four different blade loadings. Included are blade and endwall flow visualization, time resolved measurements of the static pressure on the endwall and radial-circumferential hot-wire traverse measurements within the passage as well as five-hole probe traverse measurements at the inlet and the outlet of the passage. The experimentally obtained results give detailed insight on the effect of the incidence on the development and interaction of the clearance vortex, horse-shoe vortex and the passage vortex. Furthermore it will be shown that a vortex breakdown of the clearance vortex occurs at higher loadings.


2014 ◽  
Vol 136 (10) ◽  
Author(s):  
Ch. Beselt ◽  
M. Eck ◽  
D. Peitsch

Within the present paper, a detailed experimental investigation is presented. The influence of blade loading on the development and interaction of secondary flow structures within an annular compressor stator cascade (CSC) is examined. Experimental results at 3% chord hub clearance were obtained at four different blade loadings. Included are blade and endwall flow visualization, time resolved measurements of the static pressure on the endwall and radial–circumferential hot-wire traverse measurements within the passage as well as five-hole probe traverse measurements at the inlet and the outlet of the passage. The experimentally obtained results give detailed insight on the effect of the incidence on the development and interaction of the clearance vortex, horseshoe vortex, and the passage vortex. Furthermore, it will be shown that a vortex breakdown of the clearance vortex occurs at higher loadings.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
Semiu A. Gbadebo ◽  
Nicholas A. Cumpsty ◽  
Tom P. Hynes

One of the important ways of improving turbomachinery compressor performance is to control three-dimensional (3D) separations, which form over the suction surface and end wall corner of the blade passage. Based on the insights gained into the formation of these separations, this paper illustrates how an appropriately applied boundary layer suction of up to 0.7% of inlet mass flow can control and eliminate typical compressor stator hub corner 3D separation over a range of operating incidence. The paper describes, using computational fluid dynamics, the application of suction on the blade suction surface and end wall boundary layers and exemplifies the influence of end wall dividing streamline in initiating 3D separation in the blade passage. The removal of the separated region from the blade suction surface is confirmed by an experimental investigation in a compressor cascade involving surface flow visualization, surface static pressure, and exit loss measurements. The ensuing passage flow field is characterized by increased blade loading (static pressure difference between pressure and suction surface), enhanced average static pressure rise, significant loss removal, and a uniform exit flow. This result also enables the contribution of the 3D separation to the overall loss and passage blockage to be assessed.


Author(s):  
Zhengtao Guo ◽  
Wuli Chu ◽  
Xiangyi Chen

Abstract In view of the characteristics of flow separation in the compressor cascade corner region, a new flow control method for installing little blades in the front of the cascade passage was proposed, which took into account the flow control advantages of end wall fences and vortex generators. Firstly, the little blades could hinder the cross flow on the end wall and the development of the horseshoe vortex pressure surface branch. Secondly, the little blades could generate induced vortices to take away the low-energy fluid near the end wall and the corner region. Based on numerical simulations, the effects of different pitchwise positions, stagger angles and heights of the little blades on the aerodynamic performance of the cascade were studied, and the optimal little blades were obtained by NSGA-II using EBF neural network as the agent model. The results show that the little blades have the optimal pitchwise position, stagger angle and height range for improving the aerodynamic performance of the cascade. When the optimized little blades are introduced in the baseline cascade, the stable working range of the cascade is expanded, and the stall type of the cascade changes from the hub-corner stall to the overload of flow separation near the mid-span. At the near stall attack angle of the baseline, the total pressure loss coefficient is reduced by about 10.38% and the static pressure coefficient is increased by about 4.31%. Meanwhile, the loss of the lower span is decreased and the diffuser capacity of the whole span is improved. The passage secondary loss and wake loss are reduced because of the delay of corner separation. Moreover, the strength of the end wall vortex is weakened and the end wall vortex no longer develops as part of the passage vortex. The induced vortex, horseshoe vortex pressure surface branch and initial passage vortex develop into new passage vortex.


1981 ◽  
Vol 23 (4) ◽  
pp. 179-191 ◽  
Author(s):  
C. Bosman

Inviscid, compressible flow along a rotating elemental stream-tube is taken as a model for flow through a turbomachine blade passage. For this model an analytic expression for the relative secondary vorticity of the flow is derived which permits the mean stream-surface twist about the tube axis to be evaluated. This twist implies a migration of the fluid particles from one tube corner to the contiguous tube corner, a flow feature suppressed by all existing stream-sheet flow calculations in turbomachine blade rows. The analysis is applied to a centrifugal compressor configuration where the effects on the secondary flow of hub/shroud geometry, blade shape, compressibility, and meridional diffusion are investigated. The stream-surface twist, not being primarily dependent upon the elemental nature of the stream-tube is taken as a measure of stream-surface twist and consequent surface flow migration in finite blade passages. The levels of twist obtained from the analysis are similar to those obtained in three dimensional flow calculations using primitive variables as illustrated by Bosman (1) (2)‡ and show that existing streamsheet and streamsheet stacking methods, all of which suppress the relative passage vortex are an inadequate model of the flow in centrifugal compressors. The analysis clearly shows that contrary to common assumption, centrifugal compressor impellers are capable of generating a passage vortex in the same direction as that of blade rotation.


Author(s):  
Masahiko Shinohara

Numerical simulations are performed to study the formation of a counter-rotating vortex pair (CVP), a dominant flow feature in plumes inclined in a cross-flow. The unsteady three-dimensional flow fields are calculated by a finite difference method using the Boussinesq approximation. A plume rises from an isothermally heated square surface facing upward in air. Calculations show that the CVP originates not from horizontal spanwise vorticity in the velocity boundary layer on the bottom wall around the heated area, but from horizontal streamwise vorticity just above each side of the heated area. When the cross-flow begins after a plume forms a vortex ring in the cap above the heated area in a still environment, the vortex ring does not form a CVP. However, as the cap and the stem of the plume move downwind, a rotation about the streamwise axis appears just above each side edge of the heated area and grows into the CVP. We discuss the effect of entrainment into the stem and cap on the formation of the streamwise rotation that causes the CVP.


Author(s):  
Yujie Zhu ◽  
Yaping Ju ◽  
Chuhua Zhang

Most of the inverse design methods of turbomachinery experience the shortcoming where the target aerodynamic parameters need to be manually specified depending on the designers’ experience and insight, making the design result aleatory and even deviated from the real optimal solution. To tackle this problem, an experience-independent inverse design optimization method is proposed and applied to the redesign of a compressor cascade airfoil in this study. The experience-independent inverse design optimization method can automatically obtain the target pressure distribution along the cascade airfoil through the genetic algorithm, rather than through the manual specification approach. The shape of cascade airfoil is then solved by the adjoint method. The effectiveness of the experience-independent inverse design optimization method is demonstrated by two inverse design cases of the compressor cascade airfoil, i.e. the inverse design of only the suction surface and the inverse design of both the suction and pressure surfaces. The results show that the proposed inverse design method is capable of significantly improving the aerodynamic performance of the compressor cascade. At the examined flow condition, a thin airfoil profile is beneficial to flow accelerations near the leading edge and flow separation avoidance near the trailing edge. The proposed inverse design method is quite generic and can be extended to the three-dimensional inverse design of advanced compressor blades.


Sign in / Sign up

Export Citation Format

Share Document