Experimental Investigation on the Effect of Porosity of Bend Skewed Casing Treatment on a Single Stage Transonic Axial Flow Compressor

Author(s):  
Dilipkumar B. Alone ◽  
Subramani Satish Kumar ◽  
Shobhavathy Thimmaiah ◽  
Janaki Rami Reddy Mudipalli ◽  
A. M. Pradeep ◽  
...  

A bend skewed casing treatment was designed, to study the influence of one of its geometrical parameter porosity on the stable performance of single stage transonic axial flow compressor. The compressor was designed for the stage total-to-total pressure ratio of 1.35, corrected mass flow rate of 22 kg/s at corrected design speed of 12930 RPM. Bend skewed casing treatment has an axial inlet segment till 50% of the total length and rear segment that is skewed by 45° in the direction of the rotor tip section stagger. Both the sections were oriented at a skew angle of 45° to the radial plane such that the flow exiting the slot is in counter-clockwise direction to that of the rotor direction. The casing treatment slot width was equal to the maximum thickness of the rotor blades. Three casing treatment configurations were identified for the current experimental investigation. All the treatment geometries considered for the experimental research have lower porosities than reported in the open literatures. The effect of the porosity parameter on the performance of transonic compressor stage was evaluated at two axial coverages of 20% and 40% relative to the rotor tip axial chord. Performance maps were obtained for the solid casing and casing treatment with three different porosities. Comparative studies were carried out and experimental results showed a maximum of 65% improvement in the stable operating range of the compressor for one of the treatment configurations. It was also observed that the stable operating range of the compressor increases with an increase in the casing treatment porosity. All the casing treatment configurations showed that the compressor stall occurs at lower mass flows as compared to the solid casing. Compressor stage peak efficiency shows significant degradations with increase in the porosity as compared to solid casing. Detailed blade element performances were also obtained using calibrated multi-hole aerodynamic probe. Comparative variations of flow parameters like absolute flow angle, Mach number were studied at full flow and near stall conditions for the solid casing and casing treatment configurations. Hot wire measurements show very high fluctuation in the inlet axial velocity in the presence of solid casing as compared to casing treatments. Experimental investigation revealed that the porosity of the casing treatments has strong influence on the transonic compressor stage performance.

Author(s):  
Dilipkumar B. Alone ◽  
Subramani Satish Kumar ◽  
Shobhavathy Thimmaiah ◽  
Janaki Rami Reddy Mudipalli ◽  
A. M. Pradeep ◽  
...  

Bend skewed casing treatment was designed to improve the stable operating range of single stage transonic axial flow compressor and also to understand the effects of its plenum chamber volume on the performance. This paper presents the original experimental research work undertaken to study the effect of plenum chamber depth and thus its volume on the performance of single stage transonic axial flow compressor coupled with the bend skewed casing treatment. The bend skewed casing treatment with porosity of 33% was selected for the present experimental study. The bend skewed casing treatment has slot width equal to the maximum thickness of the rotor blade. The casing treatment geometry has an axial front segment and a 45° staggered rear segment following the blade tip stagger. Both the segments were skewed by 45° in the radial plane, in such a way that the flow emerging from the casing slots would do so with swirl contrary to the direction of rotor rotation. The plenum chamber which can also be called as stagnation zone exists above the skewed slots. The plenum chamber has an axial length equal to the axial length of the casing treatment slots. The maximum depth of the plenum chamber was 11 mm and which was equal to the depth of bend skewed casing slots. The depth of plenum chamber was varied from zero, half the slot depth, and equal to slot depth in order to get variable volume. The porosity and axial location of the casing treatment relative to the rotor tip chord were chosen from the earlier experimental programs on effect of bend skewed casing treatment porosities and axial coverages for the present compressor stage. Optimum performance of the transonic compressor stage was obtained at 20% and 40% axial coverages and for 33% porosity configurations. The axial coverages of 20% and 40% were chosen for the present study to understand the effects of plenum chamber volume on the performance of single stage transonic axial flow compressor. The performance of the compressor stage with solid casing and casing treatment with different plenum volume was obtained and compared at different operating speeds. The compressor performance was derived for the fixed casing treatment porosity of 33% and for three different configurations of plenum chamber volumes at two different axial coverages. Experimental investigations reveal that the plenum chamber volume does have an impact on the stable operating range of the compressor. The compressor stall margin improves with increase in the plenum chamber volume. Bend skewed casing treatment coupled with plenum chamber of depths equal to the slots depth results in maximum stall margin improvement of 37.62% as compared to 26.40% without plenum chamber over the solid casing at 40% axial coverage. For this combination 0.8% improvement in the peak stage efficiency above the solid casing was noticed at 60% design speed.


Author(s):  
Dilipkumar B. Alone ◽  
Subramani Satish Kumar ◽  
Shobhavathy Thimmaiah ◽  
Janaki Rami Reddy Mudipalli ◽  
A. M. Pradeep ◽  
...  

The performance of an aero-engines to a large extend depends on the performance behavior of axial flow compressors and is restricted by the compressor instabilities like rotating stall and surge. In the present study, attempts have been made to design and develop the bend skewed casing treatment geometries with lower porosities to improve the stable operating range of single stage axial flow compressor. Experimental investigations were undertaken to study the impact of axial position of one of the casing treatment geometry on the single stage transonic axial flow compressor. The transonic compressor used for the current experimental studies has a stage total to total pressure ratio of 1.35, corrected mass flow rate of 22 kg/s at an operating speed of 12930 rpm. The compressor stage steady and unsteady state response for 20%, 40%, 60% and 100% axial chord coverage relative to the rotor tip chord of the bend skewed casing treatment with a porosity of 33% was studied experimentally. The objective was to identify the optimum axial location; which will give maximum improvement in the stall margin with minimal loss of compressor stage efficiency. Through an experimental study it was observed that the axial location of bend skewed casing treatment plays a very crucial role in governing the performance of the transonic compressor. For all the investigated axial coverages, compressor stall margin increases but the optimum performance in terms of stall margin improvement and efficiency gains were observed at 20% and 40% of the rotor chord. This trend shows good agreement with existing published literature. An improvement of 31.7% in the stall margin with an increase in the stage efficiency was obtained at one of the axial coverage. Maximum improvement of 37% in the stall margin above the solid casing was noticed at 60% axial coverage. The stalling characteristics of the compressor stage also changes with the axial positions. In the presence of solid casing the nature of stall was abrupt and stalls cells travels at half the rotor speed. The blade element performance also studied at the rotor exit using pre-calibrated aerodynamic probe.


2021 ◽  
pp. 106587
Author(s):  
S Satish Kumar ◽  
Dilipkumar Bhanudasji Alone ◽  
Shobhavathy M Thimmaiah ◽  
Janaki Rami Reddy Mudipalli ◽  
Lakshya Kumar ◽  
...  

Author(s):  
Wei Wang ◽  
Wuli Chu ◽  
Haoguang Zhang ◽  
Yanhui Wu

Parametric studies of recirculating casing treatment were experimentally performed in a subsonic axial flow compressor. The recirculating casing treatment was parameterized with injector throat height, injection position, and circumferential coverage percentage. Eighteen recirculating casing treatments were tested to study the effects on compressor stability and on the compressor overall performance at three blade speeds. The profiles of recirculating casing treatment were optimized to minimize the losses generated by air recirculation. In the experiment, the stalling mass flow rate, total pressure ratio, and adiabatic efficiency of the compressor were measured to study the steady-state effects on the compressor performance of recirculating casing treatments, and static pressure disturbances on the casing wall were monitored to study the influence on stall dynamics. Results indicate that both the compressor stability and overall performance can be improved through recirculating casing treatment with appropriate geometrical parameters for all the test speeds. The influence on stall margin of one geometric parameter often depends on the choice of others, i.e. the interaction effects exist. In general, the recirculating casing treatment with a moderate injector throat and a large circumferential coverage is the optimal choice to enhance compressor stability. The injector of recirculating casing treatment should be placed upstream of the blade tip leading edge and the injector throat height should be lower than four times the rotor tip gap for the benefits of compressor efficiency. At 71% speed, the blade tip loading is decreased through recirculating casing treatment at the operating condition of near peak efficiency and increased near stall. Moreover, the outlet absolute flow angle is reduced in the tip region and enhanced at lower blade spans for both operating conditions. The stall inceptions are not changed with the implementation of recirculating casing treatment for all the test speeds, but the stall patterns are altered at 33% and 53% speeds, i.e. the stall with two cells is detected in the recirculating casing treatment compared with the solid casing with only one stall cell.


2016 ◽  
Vol 5 (3) ◽  
pp. 236-249 ◽  
Author(s):  
DilipkumarBhanudasji Alone ◽  
S. Satish Kumar ◽  
Shobhavathy M. Thimmaiah ◽  
Janaki Rami Reddy Mudipalli ◽  
A.M. Pradeep ◽  
...  

1994 ◽  
Author(s):  
C. D. Farmakalides ◽  
A. B. McKenzle ◽  
R. L. Elder

This paper describes a study of the effects of design-point reaction on axial flow compressor performance. Particular attention is given to differences in stable operating range and overall efficiency. Design of an 80% reaction, zero pre-whirl, blading is presented together with a discussion on the applicability of currently available design correlations, mostly derived from 50% reaction blading tests, to such high reaction blading. Experimental data obtained from tests carried out on a low speed 3-stage axial flow research facility, at Cranfield Institute of Technology (now Cranfield University), using an existing 50% reaction blading and the new 80% reaction blading indicate that high reaction designs can result in improved operating range at no loss of efficiency. Tests carried out include performance measurements for each of the two bladings at various stator stagger settings and include inter-row radial traversing at flow conditions near optimum and stall.


1954 ◽  
Vol 58 (517) ◽  
pp. 61-64
Author(s):  
R. G. Taylor

Two design conditions for an axial flow compressor stage are proposed and examined. These are, the constant reaction condition (incorporating I “ radial equilibrium ”), and the condition that the Mach number at inlet to the rotor shall be invariant with radius. In addition, the combination of these two properties in one stage is considered. It is found, with further assumptions regarding the nature of the flow, that a forced vortex type of flow will satisfy both design specifications. The forced vortex solutions for the various cases are presented, and for constant Mach number at inlet to the rotor, more general solutions are given.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Cyril Guinet ◽  
André Inzenhofer ◽  
Volker Gümmer

The design space of axial-flow compressors is restricted by stability issues. Different axial-type casing treatments (CTs) have shown their ability to enhance compressor stability and to influence efficiency. Casing treatments have proven to be effective, but there still is need for more detailed investigations and gain of understanding for the underlying flow mechanism. Casing treatments are known to have a multitude of effects on the near-casing 3D flow field. For transonic compressor rotors, these are more complex, as super- and subsonic flow regions alternate while interacting with the casing treatment. To derive design rules, it is important to quantify the influence of the casing treatment on the different tip flow phenomena. Designing a casing treatment in a way that it antagonizes only the deteriorating secondary flow effects can be seen as a method to enhance stability while increasing efficiency. The numerical studies are carried out on a tip-critical rotor of a 1.5-stage transonic axial compressor. The examined recirculating tip blowing casing treatment (TBCT) consists of a recirculating channel with an air off-take above the rotor and an injection nozzle in front of the rotor. The design and functioning of the casing treatment are influenced by various parameters. A variation of the geometry of the tip blowing, more specifically the nozzle aspect ratio, the axial position, or the tangential orientation of the injection port, was carried out to identify key levers. The tip blowing casing treatment is defined as a parameterized geometric model and is automatically meshed. A sensitivity analysis of the respective design parameters of the tip blowing is carried out on a single rotor row. Their impact on overall efficiency and their ability to improve stall margin are evaluated. The study is carried out using unsteady Reynolds-averaged Navier–Stokes (URANS) simulations.


Sign in / Sign up

Export Citation Format

Share Document