Influencing Parameters of Tip Blowing Interacting With Rotor Tip Flow

2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Cyril Guinet ◽  
André Inzenhofer ◽  
Volker Gümmer

The design space of axial-flow compressors is restricted by stability issues. Different axial-type casing treatments (CTs) have shown their ability to enhance compressor stability and to influence efficiency. Casing treatments have proven to be effective, but there still is need for more detailed investigations and gain of understanding for the underlying flow mechanism. Casing treatments are known to have a multitude of effects on the near-casing 3D flow field. For transonic compressor rotors, these are more complex, as super- and subsonic flow regions alternate while interacting with the casing treatment. To derive design rules, it is important to quantify the influence of the casing treatment on the different tip flow phenomena. Designing a casing treatment in a way that it antagonizes only the deteriorating secondary flow effects can be seen as a method to enhance stability while increasing efficiency. The numerical studies are carried out on a tip-critical rotor of a 1.5-stage transonic axial compressor. The examined recirculating tip blowing casing treatment (TBCT) consists of a recirculating channel with an air off-take above the rotor and an injection nozzle in front of the rotor. The design and functioning of the casing treatment are influenced by various parameters. A variation of the geometry of the tip blowing, more specifically the nozzle aspect ratio, the axial position, or the tangential orientation of the injection port, was carried out to identify key levers. The tip blowing casing treatment is defined as a parameterized geometric model and is automatically meshed. A sensitivity analysis of the respective design parameters of the tip blowing is carried out on a single rotor row. Their impact on overall efficiency and their ability to improve stall margin are evaluated. The study is carried out using unsteady Reynolds-averaged Navier–Stokes (URANS) simulations.

Author(s):  
Cyril Guinet ◽  
André Inzenhofer ◽  
Volker Gümmer

The design space of axial-flow compressors is restricted by stability issues. Different axial-type casing treatments have shown their ability to enhance compressor stability and to influence efficiency. Casing treatments have proven to be effective, but there still is need for more detailed investigations and gain of understanding for the underlying flow mechanism. Casing treatments are known to have a multitude of effects on the near-casing 3D flow field. For transonic compressor rotors these are more complex, as super- and subsonic flow regions alternate while interacting with the casing treatment. To derive design rules it is important to quantify the influence of the casing treatment on the different tip flow phenomena. Designing a casing treatment in a way that it antagonizes only the deteriorating secondary flow effects can be seen as a method to enhance stability while increasing efficiency. The numerical studies are carried out on a tip-critical rotor of a 1.5 stage transonic axial compressor. The examined recirculating tip blowing casing treatment, which consists of a recirculating channel with an air off-take above the rotor and an injection nozzle in front of the rotor. The design and functioning of the casing treatment is influenced by various parameters. A variation of the geometry of the tip blowing, more specifically the nozzle aspect ratio, the axial position or the tangential orientation of the injection port, was carried out to identify key levers. The tip blowing casing treatment is defined as a parameterized geometric model and is automatically meshed. A sensitivity analysis of the respective design parameters of the tip blowing is carried out on a single rotor row. Their impact on overall efficiency and their ability to improve stall margin is evaluated. The study is carried out using URANS simulations.


Author(s):  
Yiming Zhong ◽  
WuLi Chu ◽  
HaoGuang Zhang

Abstract Compared to the traditional casing treatment, the self-recirculating casing treatment (SCT) can improve or not decrease the compressor efficiency while achieving the stall margin improvement. For the bleed port, the main design indicator is to reduce the flow loss caused by suction, while providing sufficient jet flow and jet pressure to the injector. In order to gain a better study of the bleed port stabilization mechanisms, the bleed configuration was parameterized with the bleed port inlet width and the bleed port axial position. Five kinds of recirculating casing treatments were applied to a 1.5-stage transonic axial compressor with the method of three-dimensional unsteady numerical simulation. Fifteen identical self-recirculating devices are uniformly mounted around the annulus. The numerical results show that the SCT can improve compressor total pressure ratio and stability, shift the stall margin towards lower mass flows. Furthermore, it has no impact on compressor efficiency. The optimal case presents that stability margin is improved by 6.7% employing 3.1% of the annulus mass flow. Expanding bleed port inlet width to an intermediate level can further enhance compressor stability, but excessive bleed port inlet width will reduce the stabilization effect. The optimal bleed port position is located in the blocked area of the low energy group at the top of the rotor. In the case of solid casing, stall inception was the tip blockage, which was mainly triggered by the interaction of the tip leakage vortex and passage shock. From radial distribution, the casing treatment predominantly affects the above 70% span. The reduction of tip reflux region by suction effect is the main reason for the extension of stable operation range. The SCT also has an obvious stability improvement in tip blockage stall, while delaying the occurrence of compressor stall.


2008 ◽  
Vol 2008 ◽  
pp. 1-10 ◽  
Author(s):  
M. Hembera ◽  
H.-P. Kau ◽  
E. Johann

This article presents the study of casing treatments on an axial compressor stage for improving stability and enhancing stall margin. So far, many simulations of casing treatments on single rotor or rotor-stator configurations were performed. But as the application of casing treatments in engines will be in a multistage compressor, in this study, the axial slots are applied to a typical transonic first stage of a high-pressure 4.5-stage compressor including an upstream IGV, rotor, and stator. The unsteady simulations are performed with a three-dimensional time accurate Favre-averaged Navier-stokes flow solver. In order to resolve all important flow mechanisms appearing through the use of casing treatments, a computational multiblock grid consisting of approximately 2.4 million nodes was used for the simulations. The configurations include axial slots in 4 different variations with an axial extension ranging into the blade passage of the IGV. Their shape is semicircular with no inclination in circumferential direction. The simulations proved the effectiveness of casing treatments with an upstream stator. However, the results also showed that the slots have to be carefully positioned relative to the stator location.


Author(s):  
A. Ghila ◽  
A. Tourlidakis

This paper presents a computational investigation of flows in a single axial flow fan with and without casing treatment. It analyses the effect of the recess casing treatment on stall margin improvement as well as its influence on global performance parameters. The paper seeks to offer a contribution to the understanding of the physical processes occurring when approaching stall and the working mechanism by which casing treatments improve stall margin. A Reynolds-Averaged Navier-Stokes CFD code was used for the analysis and the numerical investigation of the overall performance, efficiency and work-input characteristics of the fan were found to agree very well with previously reported experimental results. The effect of casing treatment was investigated using two types of configurations, vaneless and vaned casing. The vaneless casing treatment produced a sizeable stall margin improvement with negligible loss of efficiency. The recess was fitted later with vanes and was shown to offer both a further stall margin improvement and an increase in the pressure rise coefficient without any significant drop in efficiency at design conditions.


Author(s):  
J. Anton Streit ◽  
Frank Heinichen ◽  
Hans-Peter Kau

A state-of-the-art transonic compressor rotor has a distinct potential for increased efficiency if modified for improved interaction with an axial-slot type casing treatment. Reducing the number of blades and thus the surface lowers friction losses but increases tip clearance effects and deteriorates the stall margin due to the higher aerodynamic blade loading. The latter two negative effects can be compensated for by the casing treatment, thus restoring the required stall margin and gaining an overall reduction of losses. For the specific compressor rotor under investigation, the potential in polytropic efficiency is as high as 0.7%. The present study was performed using time-accurate CFD (URANS) simulations. Both the reference rotor as well as the modified design are analyzed regarding their interaction with the casing treatment. The traceability of the conclusions is assured by interpreting the detailed flow phenomena. The newly designed rotor is found to be favorably influenced by the casing treatment at design operating conditions whilst the reference only benefits at throttled operating points. Casing treatments are commonly used to broaden the operating range of existing compressors without changing the design of the compressor rotor itself. This study aims to show the possible transformation of this potential in the stall margin into efficiency at design operating conditions by implementing an appropriate rotor design.


Author(s):  
D. C. Rabe ◽  
C. Hah

Experimental and numerical investigations were conducted to study the fundamental flow mechanisms of circumferential grooves in the casing of a transonic compressor and their influence on compressor stall margin. Three different groove configurations were tested in a highly loaded transonic compressor. Experimental results show that circumferential grooves increase the stall margin of the compressor at the tested operating condition. Grooves with a much smaller depth than conventional designs are shown to be similarly effective in increasing the stall margin. Steady-state Navier-Stokes analyses were performed to study flow structures associated with each casing treatment. The numerical procedure calculates the overall effects of the circumferential grooves correctly. Detailed investigation of calculated flow fields indicates that losses are generated by interaction between the main passage flow and flow exiting the grooves. The grooves increase the stall margin by reducing the flow incidence angle on the pressure side of the leading edge, despite an overall increase in the endwall boundary layer thickness. This is due to complex interaction of the main passage flow with the additional radial and tangential flows created by the grooves.


Author(s):  
Jichao Li ◽  
Feng Lin ◽  
Sichen Wang ◽  
Juan Du ◽  
Chaoqun Nie ◽  
...  

Circumferential single-groove casing treatment becomes an interesting topic in recent few years, because it is a good tool to explore the interaction between the groove and the flow in blade tip region. The stall margin improvement (SMI) as a function of the axial groove location has been found for some compressors, such a trend cannot be predicted by steady high-fidelity CFD simulations. Recent efforts show that to catch such a trend, multi-passage, unsteady flow simulations are needed as the stalling mechanism itself involves cross-passage flows and unsteady dynamics. This indicates a need to validate unsteady numerical simulation results. In this paper, an extensive experimental study of a total of fifteen single casing grooves in a low-speed axial compressor rotor is presented, the groove location varies from 0.4% to 98.3% of axial tip chord are tested. The unsteady pressure data both at casing and at the blade wake with different groove locations are measured and processed, including the movement of trajectory of tip leakage flow, the evolution of unsteadiness of tip leakage flow (UTLF), the unsteady spectrum signature during the stall process, and the outlet unsteady flow characteristic along the span. These data provide a case study for validation of the unsteady CFD results, and may be helpful for further interpretation on the stalling mechanism affected by circumferential casing grooves.


Author(s):  
HaoGuang Zhang ◽  
XuDong Zhang ◽  
YanHui Wu ◽  
WuLi Chu ◽  
HaiYang Kuang

The objective of this study is to evaluate the effect of cross-blade slot casing treatment on the stability and performance of an axial flow compressor rotor. The experimental and unsteady calculated results both show that cross-blade slot casing treatment can generate about 22% stall margin improvement, and the compressor peak efficiency is reduced by about 13%. The detailed flow-field analyses indicate that the sucked and injected flow caused by the slots of cross-blade slot casing treatment can restrain the rotor tip passage blockage, which is made by the low energy tip clearance leakage vortex. When cross-blade slot casing treatment is applied, not only the rotor wheel flange work becomes lower in most of the rotor blade span, but also the flow loss in the blade tip passage becomes fairly large due to the strong interaction between the mainstream and the injected flows made by the slots. As a result, the compressor total pressure ratio and efficiency for cross-blade slot casing treatment are reduced obviously. Three kinds of new cross-blade slot casing treatment were designed according to the previous successful experience and investigated in this paper. The numerical results show that the new three cross-blade slot casing treatments both generate about 54% stall margin improvement at the cost of minor peak efficiency. For one new cross-blade slot casing treatment (CSCT2), the compressor peak efficiency is reduced by about 0.3%. The low energy TLV, which is present for cross-blade slot casing treatment, is removed by the strong sucked flow made by CSCT2. Moreover, the interaction between the mainstream and the injected flows caused by CSCT2 becomes weak obviously, and the corresponding flow loss is reduced greatly. Hence, the compressor stability and performance with CSCT2 are higher than those with cross-blade slot casing treatment.


Fluids ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 88
Author(s):  
Motoyuki Kawase ◽  
Aldo Rona

A proof of concept is provided by computational fluid dynamic simulations of a new recirculating type casing treatment. This treatment aims at extending the stable operating range of highly loaded axial compressors, so to improve the safety of sorties of high-speed, high-performance aircraft powered by high specific thrust engines. This casing treatment, featuring an axisymmetric recirculation channel, is evaluated on the NASA rotor 37 test case by steady and unsteady Reynolds Averaged Navier Stokes (RANS) simulations, using the realizable k-ε model. Flow blockage at the recirculation channel outlet was mitigated by chamfering the exit of the recirculation channel inner wall. The channel axial location from the rotor blade tip leading edge was optimized parametrically over the range −4.6% to 47.6% of the rotor tip axial chord c z . Locating the channel at 18.2% c z provided the best stall margin gain of approximately 5.5% compared to the untreated rotor. No rotor adiabatic efficiency was lost by the application of this casing treatment. The investigation into the flow structure with the recirculating channel gave a good insight into how the new casing treatment generates this benefit. The combination of stall margin gain at no rotor adiabatic efficiency loss makes this design attractive for applications to high-speed gas turbine engines.


Author(s):  
Dilipkumar B. Alone ◽  
Subramani Satish Kumar ◽  
Shobhavathy Thimmaiah ◽  
Janaki Rami Reddy Mudipalli ◽  
A. M. Pradeep ◽  
...  

A bend skewed casing treatment was designed, to study the influence of one of its geometrical parameter porosity on the stable performance of single stage transonic axial flow compressor. The compressor was designed for the stage total-to-total pressure ratio of 1.35, corrected mass flow rate of 22 kg/s at corrected design speed of 12930 RPM. Bend skewed casing treatment has an axial inlet segment till 50% of the total length and rear segment that is skewed by 45° in the direction of the rotor tip section stagger. Both the sections were oriented at a skew angle of 45° to the radial plane such that the flow exiting the slot is in counter-clockwise direction to that of the rotor direction. The casing treatment slot width was equal to the maximum thickness of the rotor blades. Three casing treatment configurations were identified for the current experimental investigation. All the treatment geometries considered for the experimental research have lower porosities than reported in the open literatures. The effect of the porosity parameter on the performance of transonic compressor stage was evaluated at two axial coverages of 20% and 40% relative to the rotor tip axial chord. Performance maps were obtained for the solid casing and casing treatment with three different porosities. Comparative studies were carried out and experimental results showed a maximum of 65% improvement in the stable operating range of the compressor for one of the treatment configurations. It was also observed that the stable operating range of the compressor increases with an increase in the casing treatment porosity. All the casing treatment configurations showed that the compressor stall occurs at lower mass flows as compared to the solid casing. Compressor stage peak efficiency shows significant degradations with increase in the porosity as compared to solid casing. Detailed blade element performances were also obtained using calibrated multi-hole aerodynamic probe. Comparative variations of flow parameters like absolute flow angle, Mach number were studied at full flow and near stall conditions for the solid casing and casing treatment configurations. Hot wire measurements show very high fluctuation in the inlet axial velocity in the presence of solid casing as compared to casing treatments. Experimental investigation revealed that the porosity of the casing treatments has strong influence on the transonic compressor stage performance.


Sign in / Sign up

Export Citation Format

Share Document