Fiber Laser Deposition of Nickel-Based Superalloys Using Filler Wire Feed

Author(s):  
Y. N. Zhang ◽  
X. Cao ◽  
P. Wanjara

In this work, a continuous wave fiber laser welding system was used to deposit nickel-based superalloys Inconel 718 (IN 718) and Waspaloy using filler wire feed sources. The multi-bead and multi-layer deposits that were manufactured were characterized in terms of the macro- and microstructures, defects, and hardness in both the as-deposited and fully heat treated conditions. The tensile properties of the deposits in the heat treated condition were also determined and compared to the existing aerospace materials specifications. Using optimized laser processing parameters, high strength deposits could be manufactured, though minor weld metal liquation cracking for IN718 and strain-age cracking for Waspaloy were present, which compromised slightly the ductility as compared to wrought aerospace specifications for the two alloys. The successful development of the direct laser deposition process using wire feeding indicates the potential of employing the fiber laser technology to manufacture nickel-based superalloy aerospace components.

2017 ◽  
Vol 31 (7) ◽  
pp. 735-741 ◽  
Author(s):  
Jun-Xia Lu ◽  
Ling Chang ◽  
Shi-Kai Wu ◽  
Shi-Kun Yin

Author(s):  
Christopher Katinas ◽  
Shunyu Liu ◽  
Yung C. Shin

Understanding the capture efficiency of powder during direct laser deposition (DLD) is critical when determining the overall manufacturing costs of additive manufacturing (AM) for comparison to traditional manufacturing methods. By developing a tool to predict the capture efficiency of a particular deposition process, parameter optimization can be achieved without the need to perform a costly and extensive experimental study. The focus of this work is to model the deposition process and acquire the final track geometry and temperature field of a single track deposition of Ti–6Al–4V powder on a Ti–6Al–4V substrate for a four-nozzle powder delivery system during direct laser deposition with a LENS™ system without the need for capture efficiency assumptions by using physical powder flow and laser irradiation profiles to predict capture efficiency. The model was able to predict the track height and width within 2 μm and 31 μm, respectively, or 3.3% error from experimentation. A maximum of 36 μm profile error was observed in the molten pool, and corresponds to errors of 11% and 4% in molten pool depth and width, respectively. Based on experimentation, the capture efficiency of a single track deposition of Ti–6Al–4V was found to be 12.0%, while that from simulation was calculated to be 11.7%, a 2.5% deviation.


2011 ◽  
Vol 314-316 ◽  
pp. 941-944 ◽  
Author(s):  
Xiang Dong Gao ◽  
Qian Wen ◽  
Seiji Katayama

During deep penetration laser welding, a keyhole is formed in the molten pool due to the intense recoil pressure of evaporation. The formation of the keyhole leads to a deep penetration weld with a high aspect ratio and this is the most advantageous feature of welding by high-energy-density beams. The configuration and characteristics of a keyhole are related to the welding stability. In a fiber laser butt-joint welding of Type 304 austenitic stainless steel plate with a high power 10 kW continuous wave fiber laser, an infrared sensitive high-speed video camera was used to capture the dynamic images of the molten pools. The configurations of a keyhole were analyzed through image processing techniques such as median filtering, wiener filtering and gray level threshold segmentation to obtain the edge of a keyhole. The width and the area of a keyhole were defined as the keyhole characteristic parameters, and the deviation between the laser beam and weld center as a parameter reflecting the welding stability. By analyzing the change of the keyhole characteristic parameters during welding process, it was found that these parameters were related to the welding stability. Welding experimental results and analysis of the keyhole characteristic parameters confirmed that the welding stability could be monitored and distinguished by a keyhole configuration during high-power fiber laser welding.


2019 ◽  
Vol 13 (8) ◽  
pp. 722-733
Author(s):  
M.O. Gushchina ◽  
O.G. Klimova-Korsmik ◽  
S.A. Shalnova ◽  
A.M. Vildanov ◽  
E.A. Valdaytseva

The additive technology of direct laser deposition (DLD) belongs to the class of 3D printing methods for metal parts and constructions. It is promising for the manufacture of large-sized complex parts for the aviation and shipbuilding industries. Methods of additive production dictate serious requirements for the properties of building powders, but with the right choice of system and taking into account all the processes that occur when a selected source acts on powder materials, unique individual material properties can be achieved. In this work, the influence of powder quality, protect atmosphere as well as processing parameters on the structure and properties of deposited parts manufactured Ti-6Al-4V investigated. Аддитивная технология прямого лазерного выращивания (ПЛВ) относится к классу методов 3D печати металлических изделий. Она является перспективной для изготовления крупногабаритных сложнопрофильных изделий авиационной и судостроительной промышленностей. Методы аддитивного производства диктуют серьезные требования к свойствам используемых порошков, но при правильном выборе системы и с учетом всех процессов, протекающих при воздействии выбранного источника на порошковые материалы можно добиться уникальных индивидуальных свойств материала. В данной работе представлены результаты исследований влияния качества порошков, качества атмосферы и технологических режимов процесса на структуру и свойства конечных изделий, изготовленных методом прямого лазерного выращивания из титанового сплава ВТ6. Кроме того, показана принципиальная возможность повторного использования титановых порошков для достижение более высоких экономических показателей процесса.


2014 ◽  
Vol 41 (10) ◽  
pp. 1003007
Author(s):  
孔晓芳 Kong Xiaofang ◽  
李飞 Li Fei ◽  
吕俊霞 Lü Junxia ◽  
吴世凯 Wu Shikai ◽  
肖荣诗 Xiao Rongshi

Sign in / Sign up

Export Citation Format

Share Document