Flame Area Fluctuation Measurements in Velocity-Forced Premixed Gas Turbine Flames

Author(s):  
Alexander J. De Rosa ◽  
Janith Samarasinghe ◽  
Stephen J. Peluso ◽  
Bryan D. Quay ◽  
Domenic A. Santavicca

Fluctuations in the heat release rate that occur during unstable combustion in lean premixed gas turbine combustors can be attributed to velocity and equivalence ratio fluctuations. For a fully premixed flame, velocity fluctuations affect the heat release rate primarily by inducing changes in the flame area. In this paper, a technique to analyze changes in flame area using chemiluminescence-based flame images is presented. The technique decomposes the flame area into separate components which characterize the relative contributions of area fluctuations in the large scale structure and the small scale wrinkling of the flame. The fluctuation in the wrinkled area of the flame which forms the flame brush is seen to dominate its response in the majority of cases tested. Analysis of the flame area associated with the large scale structure of the flame resolves convective perturbations that move along the mean flame position. Results are presented that demonstrate the application of this technique to both single-nozzle and multi-nozzle flames.

Author(s):  
Alexander J. De Rosa ◽  
Janith Samarasinghe ◽  
Stephen J. Peluso ◽  
Bryan D. Quay ◽  
Domenic A. Santavicca

Fluctuations in the heat release rate that occur during unstable combustion in lean-premixed gas turbine combustors can be attributed to velocity and equivalence ratio fluctuations. For a fully premixed flame, velocity fluctuations affect the heat release rate primarily by inducing changes in the flame area. In this paper, a technique to analyze changes in the flame area using chemiluminescence-based flame images is presented. The technique decomposes the flame area into separate components which characterize the relative contributions of area fluctuations in the large-scale structure and the small-scale wrinkling of the flame. The fluctuation in the wrinkled area of the flame which forms the flame brush is seen to dominate its response in the majority of cases tested. Analysis of the flame area associated with the large-scale structure of the flame resolves convective perturbations that move along the mean flame position. Results are presented that demonstrate the application of this technique to both single-nozzle and multi-nozzle flames.


2000 ◽  
Vol 3 (04) ◽  
pp. 283-291 ◽  
Author(s):  
V.C. Tidwell ◽  
J.L. Wilson

Summary Over 75,000 permeability measurements were collected from a meter-scale block of Massillon sandstone, characterized by conspicuous crossbedding that forms two distinct nested scales of heterogeneity. With the aid of a gas minipermeameter, spatially exhaustive fields of permeability data were acquired at each of five different sample supports (i.e., sample volumes) from each block face. These data provide a unique opportunity to physically investigate the relationship between the multiscale cross-stratified attributes of the sandstone and the corresponding statistical characteristics of the permeability. These data also provide quantitative physical information concerning the permeability upscaling of a complex heterogeneous medium. Here, a portion of the data taken from a single block face cut normal to stratification is analyzed. The results indicate a strong relationship between the calculated summary statistics and the cross-stratified structural features visibly evident in the sandstone sample. Specifically, the permeability fields and semivariograms are characterized by two nested scales of heterogeneity, including a large-scale structure defined by the cross-stratified sets (delineated by distinct bounding surfaces) and a small-scale structure defined by the low-angle cross-stratification within each set. The permeability data also provide clear evidence of upscaling. That is, each calculated summary statistic exhibits distinct and consistent trends with increasing sample support. Among these trends are an increasing mean, decreasing variance, and an increasing semivariogram range. The results also clearly indicate that the different scales of heterogeneity upscale differently, with the small-scale structure being preferentially filtered from the data while the large-scale structure is preserved. Finally, the statistical and upscaling characteristics of individual cross-stratified sets were found to be very similar because of their shared depositional environment; however, some differences were noted that are likely the result of minor variations in the sediment load and/or flow conditions between depositional events. Introduction Geologic materials are inherently heterogeneous because of the depositional and diagenetic processes responsible for their formation. These heterogeneities often impose considerable influence on the performance of hydrocarbon bearing reservoirs. Unfortunately, quantitative characterization and integration of reservoir heterogeneity into predictive models are complicated by two challenging problems. First, the quantity of porous media observed and/or sampled is generally a minute faction of the reservoir under investigation. This gives rise to the need for models to predict material characteristics at unsampled locations. The second problem stems from technological constraints that often limit the measurement of material properties to sample supports (i.e., sample volumes) much smaller than can be accommodated in current predictive models. This disparity in support requires measured data be averaged or upscaled to yield effective properties at the desired scale of analysis. The concept of using "soft" geologic information to supplement often sparse "hard" physical data has received considerable attention.1,2 Successful application of this approach requires that some relationship be established between the difficult to measure material property (e.g., permeability) and that of a more easily observable feature of the geologic material. For example, Davis et al.3 correlated architectural-element mapping with the geostatistical characteristics of a fluvial/interfluvial formation in central New Mexico; Jordan and Pryor4 related permeability controls and reservoir productivity to six hierarchical levels of sand heterogeneity in a fluvial meander belt system; while Istok et al.5 found a strong correlation between hydraulic property measurements and visual trends in the degree of welding of ash flow tuffs at Yucca Mountain, Nevada. Phillips and Wilson6 mapped regions where the permeability exceeds some specified cutoff value and related their dimensions to the correlation length scale by means of threshold-crossing theory. Also, Journel and Alabert7 proposed a spatial connectivity model based on an indicator formalism and conditioned on geologic maps of observable, spatially connected, high-permeability features. The description and quantification of heterogeneity is necessarily related to the issue of scale. It is often assumed that geologic heterogeneity is structured according to a discrete and disparate hierarchy of scales. For example, the hierarchical models proposed by Dagan8 and by Haldorsen9 conveniently classify heterogeneities according to the pore, laboratory, formation, and regional scales. This assumed disparity in scales allows parameter variations occurring at scales smaller than the modeled flow/transport process to be spatially averaged to form effective media properties,10–14 while large-scale variations are treated as a simple deterministic trend.2,15 However, natural media are not always characterized by a large disparity in scales as assumed above;16 but rather, an infinite number of scales may coexist,17–20 leading to a fractal geometry or continuous hierarchy of scales.21


Author(s):  
Rongxiao Dong ◽  
Qingchun Lei ◽  
Yeqing Chi ◽  
Qun Zhang ◽  
Wei Fan

Abstract Time-resolved volumetric measurements (4D measurements) were performed to study the heat release rate characteristics in a model gas turbine combustor at 10 kHz. For this purpose, a high-speed camera combined with an image intensifier and a set of customized fiber probes were employed to continuously capture the CH* chemiluminescence signals from nine different viewing angles. Based on the measurements, the computed tomography program was performed to reconstruct the shot-to-shot 3D distributions of the CH* signals. Specific focuses have been made to demonstrate the capabilities of the current tomographic technique in applications of a realistic combustor, in which the full optical access was usually not available for every viewing angle. The results showed that the 3D reconstruction can successfully retrieval the flame edge contours rather than the signal intensity. The flame surface area was then calculated based on the reconstructed flame edge contours and used to infer the heat release rate. The fluctuation of global/local flame surface area indicated that there existed distinct difference between the global instability and local instabilities at various locations in the non-symmetric combustor. The global instability appears to be an integration of those local instabilities.


Author(s):  
Mitchell L. Passarelli ◽  
J. D. Maxim Cirtwill ◽  
Timothy Wabel ◽  
Adam M. Steinberg ◽  
A. J. Wickersham

Abstract This paper analyzes intermittent self-excited thermoacoustic oscillations in which the pressure (P′) and heat release rate (q̇′) fluctuations are harmonically coupled. That is to say, P′ and q̇′ do not oscillate at the same frequencies, but rather at frequencies in integer ratios. Thus, this system represents a case dominated by nonlinear cross-mode coupling. The measurements were obtained in an optically-accessible combustor equipped with an industrial gas turbine fuel injector operating with liquid fuel under partially-premixed conditions at elevated pressure. High-speed chemiluminescence (CL) imaging of OH* was used as an indicator of the heat release rate. The data was processed using spectral proper orthogonal decomposition (SPOD) to isolate the dominant heat release and pressure modes. Synchronization theory was used to determine when the modes are coupled and how their interaction manifests in the measurements, particularly how it relates to the observed intermittency. The results show three distinct intervals of synchronized oscillation shared by all the mode pairs analyzed. The first interval exhibits the same characteristics as a pair of noisy, phase-locked self-oscillators, with phase-slipping and frequency-pulling. While the behaviour of the second interval differs among mode pairs, strong frequency-pulling is observed during the third interval for all pairs.


1962 ◽  
Vol 5 (19) ◽  
pp. 505-510
Author(s):  
Takashi SATO ◽  
Itaru MICHIYOSHI ◽  
Ryuichi MATSUMOTO

Author(s):  
Charles Luo ◽  
Soroush Yazdani ◽  
Brian Y. Lattimer

Large scale flammability performance of interior finish used on railcars has been evaluated in previous studies using the NFPA 286 room corner fire test, which has a cross-section similar to a railcar. In some studies, the wall containing the door was removed to account for the shorter length of the room compared to the railcar length. The focus of this study is to assess whether the NFPA 286 standard room-corner test with a door represents conditions that developed inside a railcar during a fire. Fire Dynamics Simulator (FDS) was used to model the fire growth in a NFPA 286 standard room-corner test with a door, NFPA 286 room without the wall containing the door, and railcar geometry with a single door open. All three cases had the same exposure fire in a corner and the same lining material. In predictions of the NFPA 286 room-corner test with a door, gas temperature, heat release rate, and time to flashover agreed well with available NFPA 286 standard test data. The simulation results of fire growth inside a railcar with one side door open produced similar conditions and fire growth compared with the standard NFPA 286 room with a door. For simulations on the NFPA 286 room with the wall containing the door removed, it was found that removal of the wall with the door resulted in non-conservative fire growth conditions with the gas temperature and heat release rate under-estimated compared to the standard NFPA 286 room with a door. These simulations indicate that the standard NFPA 286 room-corner test with a door is representative of conditions that would develop inside of a railcar.


Sign in / Sign up

Export Citation Format

Share Document