2018 Joint Rail Conference
Latest Publications


TOTAL DOCUMENTS

100
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791850978

Author(s):  
Mark P. Colino ◽  
Elena B. Rosenstein

This paper provides an overview of the design of natural ventilation systems to control smoke movement in rail tunnels. The paper discusses the current industry standards and design requirements for tunnel emergency ventilation systems, and then addresses the various technical elements that are used to design such systems. These technical elements include parameters in the direct control of the designer, as well as those that are beyond the control of the designer. The paper also presents a case study where various physical design elements are utilized to create a working natural ventilation smoke control system for a short rail tunnel.


Author(s):  
Kenneth Diemunsch ◽  
Keith Altamirano

This paper discusses two real-world challenges faced by Communications-Based Train Control (CBTC) testing programs. a) Why is it that even after a successful complete system Factory Acceptance Test (FAT), the performance of the CBTC system during the first few months of field tests is prone to frequent failures? On some projects, it may be months between a successful FAT and the first operation in CBTC mode. b) How accurately and efficiently can the root cause of failures during the field tests be identified and how could a test program be improved to have a smooth transition from field testing to revenue service. Unlike commissioning a conventional signaling system, where after circuit break down and operation testing are completed, the system works well during revenue service, CBTC projects experience an additional round of ‘surprises’ when the system is put in service after months or years of testing [1]. This comment is valid for both new lines and signaling upgrade projects, it should be noted that signaling upgrade projects are more prone to ‘surprises’ due to the limited track access which reduces testing time. Even though the final test results prior to revenue service indicate no ‘showstoppers’, once system is placed in service, it is common to unearth major issues that impact sustainable revenue operation. Though, as it should, this often comes as a surprise to transit agencies installing CBTC for the first time, it is almost accepted as fate by most of the experienced CBTC engineers. This paper describes the tests performed prior to placing system in revenue service and analyzes some of the issues experienced. Detailed information regarding the field tests can be found in [2]. Description of possible mitigations used by CBTC suppliers and transit agencies are included, as well as likely reasons for such a predictable pattern on CBTC projects. Finally, ideas about how to continue improving the mitigation to minimize the risk of major system issues are presented.


Author(s):  
Tejashree Turla ◽  
Xiang Liu ◽  
Zhipeng Zhang ◽  
Zheyong Bian

Railways have a substantial contribution to the economy of the United States. However, a train accident can result in casualties and extensive damages to infrastructure and the environment. Most of the prior research focused on derailments or grade-crossing accidents rather than the study of train collisions. The Federal Railroad Administration (FRA) identifies over 300 causes for all types of accidents, among which we aim to recognize the major factors that cause train collisions. Evaluating how collision frequency and severity vary with the accident cause is the key part of this research, in order to identify, evaluate and mitigate transportation risk. This paper presents a statistical analysis of passenger and freight train collisions in the United States from 2001 to 2015 to statistically analyze train collision frequency, severity, accident cause, and safety risk. The analysis finds that human errors and signal failures are among the most common causes of train collisions in U.S. in the 15-year study period. There is a significant decline in the overall train collision frequency by year. By observing these trends with respect to train collisions, possible accident prevention strategies could be developed and implemented accordingly.


Author(s):  
Kyle A. Riding ◽  
Robert J. Peterman ◽  
Spencer Guthrie ◽  
Matthew Brueseke ◽  
Hossein Mosavi ◽  
...  

Sites with known occurrences of mud pumping or other track concerns were investigated to determine the prevalence of concrete bottom tie abrasion and environmental and track conditions that could contribute to its occurrence. Field investigations showed that it occurs in diverse geographic locations around the U.S. and is a source of continued maintenance concern for railroads. Water appeared to be a significant factor involved in concrete bottom tie abrasion. Ballast fouling, center-binding cracking, rail surface profile variations, and large track movement during loading was seen in locations with concrete bottom tie abrasion. Bumps or track stiffness changes were often found at locations of abrasion damage. Specifically, some locations with known stiff track conditions exhibited significant abrasion damage.


Author(s):  
Prajakta Prabhune ◽  
Anindya Deb ◽  
G. Balasubramani

This work intends to lay the groundwork for Computer Aided Engineering (CAE)-based occupant safety of a typical tier-III Indian Railway (IR) passenger coach in a collision accident. Our previous work presented in International Crashworthiness Conference 2010 under the title “Simulation of Crash Behaviour of a Common Indian Railway Passenger Coach” provided crashworthiness assessment of a typical tier-III passenger coach structure for representative head-on collision scenarios namely, against an identical passenger coach and against a stationary locomotive. These scenarios were envisioned to be part of a bigger accident scenario e.g - head-on collision between two trains moving towards each other. Analysis of involved chain of events for entire rolling stock and resulting internal collisions between individual passenger cars was out of scope of this work and necessary inputs were obtained from available literature on the same. This work used a full scale Finite Element (FE) simulation model and commercial explicit solver LS-Dyna. FE model was validated using International Railway Union (UIC) code OR566 specified proof loads for design. Simulation methodology used for dynamic impact was validated by component level crushing experiments using a drop tower facility. Material modelling incorporated strain rate effect on yield strength which is essential for obtaining accurate structural deformations under dynamic impact loading. Contacts were modelled using the penalty method option provided by the solver. This model was simulated for collisions at 30, 40 and 56 km/h against a stationary rigid barrier. Collision speeds were chosen to simulate impact energies involved in collision scenarios as mentioned above. The structure was found to exhibit global bending deformation and jackknifing with pivot position at the door section. In this paper, we present an extension of this work — coupled occupant safety simulation and injury assessment. It was accomplished by recording head, neck, chest and knee responses of a Hybrid-III 50th percentile male Anthropomorphic Test Device (ATD) FE model, seated in passenger position on lower berth of the first cabin of a passenger car. Interiors were modelled to represent the actual structure. Dummy model was adapted to passenger cabin’s excessive mobility conditions and responses were revalidated against Federal Motor Vehicle Safety Standards (FMVSS) limits. Injury interpretation was based on Abbreviated Injury Scale (AIS), automotive injury criteria and injury risk curves for Head Injury Criterion (HIC), thoracic spine acceleration, neck bending moment in flexion and extension and knee force. This study provides with estimates of injury and fatality based on computer simulation of accident scenarios. However, attempts of correlating to any available injury and fatality statistics were out of scope of this study.


Author(s):  
John Hofbauer ◽  
Joseph Hofbauer

This paper begins with examining the fundamental nature of wayside signals and considers the first know signaling practices used to communicate the condition of the track ahead to the train engineer. The principle of wayside signals is to keep trains separated and to provide knowledge of the conditions ahead; speed and routing information. Most railways have gone through many different evolutions of signals and practices some driven by railway mergers which drove the operating rules. This consistently required changes within the training of locomotive engineers assigned operate trains within their territory. This paper will focus on a few transitions between signal types, the specific makeups and effectiveness of wayside signals since the beginning of railway signals in the early 1830s. Starting with the term “High Ball” not related to a popular drink known today, but a raising of a large ball into the air that could be seen from afar instructing a train his status to train operating schedule. Later, signals were developed to provide the train engineer the status of the track ahead by dividing the track into short sections. This allowed the track section to be labeled as “occupied” a train present or “un-occupied”, train not present within the track section. Wayside signals continued to be advanced such that today’s standards, aspects (mimicking the wayside signals) are displayed within the operating cab providing the indication directly to the engineer. As we continue forward, wayside signals have been reduced and in the future, they may be only in a museum next to the cassette player.


Author(s):  
Jian Sun ◽  
Kevin Blostic

This paper provides a unique perspective on successful brownfield railroad applications. It presents realistic challenges and solutions when applying a turnkey solution with a replacement or an overlay system. Brownfield commissioning takes place when an existing infrastructure is to upgrade to a new system with a different technology than the incumbent one. As signaling systems are getting more and more complex, it is extremely important to maintain robustness in the system design as well as project execution, such as logistics, documentation, and issue reporting. Many transportation authorities are moving from their current train control signaling system to a new system to combat obsolescence issues, to gain better system capacity, and to lower operation and maintenance costs. This paper discusses brownfield commissioning in general, and also presents specific cases in migration from a track circuit interlocking system to a Communications Based Train Control (CBTC) system. These two systems have distinct characteristics that provide opportunities of coexistence, but also introduce difficulties in mixed-mode operations.


Author(s):  
Saied Taheri ◽  
Behzad Moslehi ◽  
Vahid Sotoudeh ◽  
Brad M. Hopkins

Early detection of rail defects can avoid derailments and costly damage to the train and railway infrastructure. Small breaks, cracks or corrugations on the rail can quickly propagate after only a few train cars have passed over it, creating a potential derailment. The current technology makes use of a dedicated instrumented car or a separate railway monitoring vehicle to detect large breaks. These cars are usually equipped with accelerometers mounted on the axle or side frame. The simple detection algorithms use acceleration thresholds which are set at high values to eliminate false positives. As a result, rail surface defects that produce low amplitude acceleration signatures may not be detected, and special track components that produce high amplitude acceleration signatures may be flagged as defects. This paper presents the results of a feasibility study conducted to develop new and more advanced sensory systems as well as signal processing algorithms capable of detecting various rail surface irregularities. A dynamic wheel-rail interaction model was used to simulate train dynamics as a result of rail defects and to assess the potential of this new technology on rail defect detection. In a future paper, we will present experimental data in support of the proposed model and simulations.


Author(s):  
Mohamad Ghodrati ◽  
Mehdi Ahmadian ◽  
Reza Mirzaeifar

A micromechanical-based 2D framework is presented to study the rolling contact fatigue (RCF) in rail steels using finite element method. In this framework, the contact patch of rail and wheel is studied by explicitly modeling the grains and grain boundaries, to investigate the potential origin of RCF at the microstructural level. The framework incorporates Voronoi tessellation algorithm to create the microstructure geometry of rail material, and uses cohesive zone approach to simulate the behavior of grain boundaries. To study the fatigue damage caused by cyclic moving of wheels on rail, Abaqus subroutines are employed to degrade the material by increasing the number of cycles, and Jiang-Sehitoglu fatigue damage law is employed as evolution law. By applying Hertzian moving cyclic load, instead of wheel load, the effect of traction ratio and temperature change on RCF initiation and growth are studied. By considering different traction ratios (0.0 to 0.5), it is shown that increasing traction ratio significantly increases the fatigue damage. Also by increasing traction ratio, crack initiation migrates from the rail subsurface to surface. The results also show that there are no significant changes in the growth of RCF at higher temperatures, but at lower temperatures there is a measurable increase in RCF growth. This finding correlates with anecdotal information available in the rail industry about the seasonality of RCF, in which some railroads report noticing more RCF damage during the colder months.


Author(s):  
Bih-Yuan Ku ◽  
Ching-Hsiang Chang

The variations in the operation timetable or schedule of an electrified transit rail system can lead to substantial fluctuations in power demands of its traction power network. This paper studies the correlation between the maximum power demands and timetable perturbations for electrified transit rail systems. Specifically, the operation schedule uncertainties are quantified as two parameters: headway shift and headway perturbation. A computation algorithm is introduced to illustrate how to use these two parameters to obtain the worst case scenario to obtain maximum power demand of traction power substations. Also a special type of catenary-free light rail system is used as an example to illustrate the algorithm and numerical results.


Sign in / Sign up

Export Citation Format

Share Document