unstable combustion
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 14)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 100 (4) ◽  
pp. 52-59
Author(s):  
L.V. Opryshko ◽  
◽  
T.V. Golovnyak ◽  

Results of comprehensive studies of samples of prematurely destroyed 57×4 mm steam superheaer tubes of STBA 22 steel used in a boiler unit of Singburi Sugar Co, Ltd factory (Thailand) are presented. The tubes were manufactured at Interpipe Niko Tube Ltd. (Ukraine) according to JIS G 3462 Standard (Japan). They were destroyed in a short (~240 hrs) term of operation. The cause of premature destruction of tubes of the above steel grade and size assortment in the boiler unit has been established. Based on present-day investigation methods (metallography, X-ray diffraction, etc.), it was found that the tubes were operated with violation of fuel combustion conditions and heat-carrying agent circulation. Characteristic features of operation of damaged tubes include high thermal stresses from the side of the fire-chamber and limitation (or absence) of circulation of the heat-carrying agent (blockage in bends, drum heads, etc.). During operation, the tubes were also exposed to significant thermal vibration stresses (unstable combustion conditions). Prolonged overheating occurred at temperatures above 1000 °C because of violation of circulation of heat-carrying agent and unstable combustion mode. High thermal stresses at almost complete absence of a heat-carrying agent, uneven distribution of growing heat flows caused by violation of the combustion mode in the fire-chamber contributed to accelerated degradation of structure and thermal destruction of the tube metal. In a short term of operation (~240 hours), there was a significant change in the tube size (accelerated high-temperature creep) and complete recrystallization of metal structure throughout the entire wall thickness of the damaged tubes. It has been established that the accelerated degradation of metal microstructure in the destroyed tubes was associated with both overheating of the tube wall and the as-delivered metal structure non-recommended for operation at high temperatures and pressures. It was shown that it is necessary to adjust the heat treatment conditions for these tubes at Interpipe Niko Tube Ltd. The study results have made it possible to develop recommendations for eliminating violations of operating conditions and establishing control of actual heat flows in the most thermally loaded sections of the Singburi Sugar Co. Ltd factory’s steam boiler superheater. Taking into account peculiarities of the boiler equipment and its operating conditions, it was also recommended to use a more heat-resistant and refractory steel instead of the currently used material for manufacture of the steam superheater tubes. Keywords: boiler tube, steam superheater, damage, thermal destruction, structure degradation, combustion conditions, heat carrier circulation, overheating.


2021 ◽  
Vol 2131 (2) ◽  
pp. 022064
Author(s):  
A Nikitin ◽  
V Poberezhnyy

Abstract The article considers examples of unstable combustion processes in individual cylinders of marine diesel installations. It is shown that the instability of thermal engineering processes is determined by the grade of fuel, fuel preparation, wear of the cylinder-piston group and fuel equipment. The necessity of continuous monitoring of the technical condition of the power plant during operation is shown.


2021 ◽  
Author(s):  
M. Weber ◽  
J. Song ◽  
J. G. Lee

Abstract The flame dynamics during unstable combustion occurring in a model gas turbine combustor under fuel-rich conditions analogous to idle and sub-idle conditions in an aero-engine is characterized by simultaneous measurement of flame emissions and dynamic pressure fluctuation as well as high-speed imaging. Pressure fluctuation during unstable combustion causes linearly increasing velocity fluctuation at the combustor inlet. The fluctuation level of CH*-band emission which is mainly from soot linearly increases with respect to the combustor inlet velocity fluctuation up to ∼40% of mean velocity while that of OH*-band emission which is from OH* is non-linear. Highspeed imaging shows that the OH*-band emission fluctuation occurs mainly near the dump plane but the CH*-band emission fluctuation occurs downstream of it. When the pressure fluctuation is more than 1% of mean pressure, there exists an almost constant phase delay between emissions from OH*- and CH*-band and dynamic pressure fluctuations and the phase delay satisfies the Rayleigh criterion. In addition, the Rayleigh integral made over the whole flame and one period of oscillation of thermoacoustic instability becomes positive. These may suggest either OH*- or CH*-band emission can be used as a representation of heat release. However, the observations that the mean OH*-band emission intensity increases but the mean CH*-band emission intensity does not as the mean equivalence ratio increases and the fluctuation level of emission in OH*-band increases but that in CH*-band emission does not as the pressure fluctuation level increases strongly suggest that the emission from OH*-band should be considered as a representation of heat release for sooty flames under the employed operating condition in this study.


2021 ◽  
Vol 2021 (1) ◽  
pp. 63-67
Author(s):  
V.S. Kozin ◽  

The aim of this work is to eliminate the explosion possibility of a rocket engine that operates on a fast-burning solid propellant. The problem is considered by analogy with experiments conducted earlier. Various ways to increase the propellant combustion rate are presented. Examples of how the solid propellant combustion rate depends on the metal fuel and the oxidizer particle size are given. It is shown that unstable combustion of a solid propellant at high combustion chamber pressures is due to unstable combustion of the gas phase in the vicinity of the bifurcation point. Zeldovich’s theory of nonstationary powder combustion is applied to analyzing the explosion dynamics of the Hrim-2 missile’s solid-propellant sustainer engine. This method of analysis has not been used before. The suggested version that this phenomenon is related to the aluminum particle size allows one to increase the combustion rate in the combustion chamber of a liquid-propellant engine, thus avoiding the vicinity of the bifurcation point. The combustion of solid propellants differing in aluminum particle size is considered. The metal fuel and the oxidizer particle sizes most optimal in terms of explosion elimination are determined and substantiated. The use of submicron aluminum enhances the evaporation of ammonium perchlorate due to the infrared radiation of aluminum particles heated to an appropriate radiation temperature. This increases the gas inflow into the charge channel, thus impeding the suppression of ammonium perchlorate sublimation by a high pressure, which is important in the case where the engine body materials cannot withstand a high pressure in the charge channel. This increases the stability and rate of solid propellant combustion. It is shown that the Hrim-2 missile’s solid propellant cannot be used in the Hran missile. The combustion rate is suggested to be increased by using fine-dispersed aluminum in the solid propellant.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Abdulla Ghani ◽  
Isaac Boxx ◽  
Carrie Noren

Abstract This paper presents a data-driven identification framework with the objective to retrieve a flame model from the nonlinear limit cycle. The motivation is to identify a flame model for configurations, which do not allow the determination of the flame dynamics: that is commonly for industrial applications where (i) optical access for nonintrusive measurements of velocity and heat release fluctuations are not feasible and (ii) unstable combustion is monitored via multiple pressure recordings. To demonstrate the usefulness of the method, we chose three test cases: (i) a classical Rijke tube; (ii) an experiment of a laminar flame (EM2C case), (iii) and a high-pressure, turbulent premixed flame (German Aerospace Center (DLR) case). The procedure is as follows: First, acoustic network models for the three cases are generated for which the in-house software taX is employed. Next, the acoustic network models are embedded in an optimization framework with the objective to identify flame parameters that match the experimental limit cycle data: based on the instability frequency and pressure amplitudes, we formulate physical constraints and an objective function in order to identify the flame model parameters gain nopt and time delay τopt in the nonlinear regime. We demonstrate for the three cases that the identified flame parameters reproduce the unstable combustion processes and highlight the usefulness of the method for control purposes.


Author(s):  
A. N. Dubovitsky ◽  
◽  
E. D. Sverdlov ◽  
K. S. Pyankov ◽  
H. F. Valiev ◽  
...  

To reduce the NOx emission level in low emission combustors designed for industrial gas turbines, the technology of lean preliminary mixed fuel-air mixtures burning is used. But this gives rise to combustion instability modes.


Author(s):  
Abdulla Ghani ◽  
Isaac Boxx ◽  
Carrie Noren

Abstract This paper presents a data-driven identification framework with the objective to retrieve a flame model from the nonlinear limit cycle. The motivation is to identify a flame model for configurations, which do not allow the determination of the flame dynamics: that is commonly for industrial applications where (i) optical access for non-intrusive measurements of velocity and heat release fluctuations are not feasible and (ii) unstable combustion is monitored via multiple pressure recordings. To demonstrate the usefulness of the method, we chose three test cases: (i) a classical Rijke tube; (ii) an experiment of a laminar flame (EM2C case) (iii) and a high-pressure, turbulent premixed flame (DLR case). The procedure is as follows: First, acoustic network models for the three cases are generated for which the in-house software taX is employed. Next, the acoustic network models are embedded in an optimization framework with the objective to identify flame parameters that match the experimental limit cycle data: based on the instability frequency and pressure amplitudes, we formulate physical constraints and an objective function in order to identify the flame model parameters gain nopt and time delay τopt in the nonlinear regime. We demonstrate for the three cases that the identified flame parameters reproduce the unstable combustion processes and highlight the usefulness of the method for control purposes.


Author(s):  
Xuezhi Li ◽  
Jianping Zhou ◽  
Kedian Wang ◽  
Tianbo Wu ◽  
Yan Xu ◽  
...  

To solve core problems of slow arc response and unstable combustion, arc movement characteristics and arc action rules in short electrical arc milling are studied using a high-speed acquisition system and the Phantom high-speed camera in this article. To improve arc reignition, the characteristic parameters of arc discharge are determined as a discharge gap of 0.053 mm and discharge time of 2180 μs. A short electrical arc milling experiment with nickel-based superalloy GH4169 is carried out, confirming that the continuous stable discharge of the arc can easily produce a material removal rate of 40 g/min and a tool wear ratio of 0.8%. An SU8010 scanning electron microscope and energy spectrum analyzer are then used to study the erosion mechanism of GH4169 in short electrical arc milling. This article aims to expand the processing range of short electrical arc machining in the field of special material processing to provide experimental and theoretical bases for the development of short electrical arc milling technology theory and methods.


Sign in / Sign up

Export Citation Format

Share Document