Comparison of Staggered and In-Line V-Shaped Dimple Arrays Using S-PIV

Author(s):  
Charles P. Brown ◽  
Lesley M. Wright ◽  
Stephen T. McClain

As a result of the reduced pressure loss relative to ribs, recessed dimples have the potential to increase the thermal performance of internal cooling passages. In this experimental investigation, a Stereo-Particle Image Velocimetry (S-PIV) technique is used to characterize the three-dimensional, internal flow field over V-shaped dimple arrays. These flowfield measurements are combined with surface heat transfer measurements to fully characterize the performance of the proposed V-shaped dimples. This study compares the performance of two arrays. Both a staggered array and an in-line array of V-shaped dimples are considered. The layout of these V-shaped dimples is derived from a traditional, staggered hemispherical dimple array. The individual V-shaped dimples follow the same geometry, with depths of δ / D = 0.30. In the case of the in-line pattern, the spacing between the V-shaped dimples is 3.2D in both the streamwise and spanwise directions. For the staggered pattern, a spacing of 3.2D in the spanwise direction and 1.6D in the streamwise direction is examined. Each of these patterns was tested on one wide wall of a 3:1 rectangular channel. The Reynolds numbers examined range from 10000 to 37000. S-PIV results show that as the Reynolds numbers increase, the strength of the secondary flows induced by the in-line array increases, enhancing the heat transfer from the surface, without dramatically increasing the measured pressure drop. As a result of a minimal increase in pressure drop, the overall thermal performance of the channel increases as the Reynolds number increases (up to the maximum Reynolds number of 37000).

2012 ◽  
Vol 135 (1) ◽  
Author(s):  
C. Neil Jordan ◽  
Lesley M. Wright

An alternative to ribs for internal heat transfer enhancement of gas turbine airfoils is dimpled depressions. Relative to ribs, dimples incur a reduced pressure drop, which can increase the overall thermal performance of the channel. This experimental investigation measures detailed Nusselt number ratio distributions obtained from an array of V-shaped dimples (δ/D = 0.30). Although the V-shaped dimple array is derived from a traditional hemispherical dimple array, the V-shaped dimples are arranged in an in-line pattern. The resulting spacing of the V-shaped dimples is 3.2D in both the streamwise and spanwise directions. A single wide wall of a rectangular channel (AR = 3:1) is lined with V-shaped dimples. The channel Reynolds number ranges from 10,000–40,000. Detailed Nusselt number ratios are obtained using both a transient liquid crystal technique and a newly developed transient temperature sensitive paint (TSP) technique. Therefore, the TSP technique is not only validated against a baseline geometry (smooth channel), but it is also validated against a more established technique. Measurements indicate that the proposed V-shaped dimple design is a promising alternative to traditional ribs or hemispherical dimples. At lower Reynolds numbers, the V-shaped dimples display heat transfer and friction behavior similar to traditional dimples. However, as the Reynolds number increases to 30,000 and 40,000, secondary flows developed in the V-shaped concavities further enhance the heat transfer from the dimpled surface (similar to angled and V-shaped rib induced secondary flows). This additional enhancement is obtained with only a marginal increase in the pressure drop. Therefore, as the Reynolds number within the channel increases, the thermal performance also increases. While this trend has been confirmed with both the transient TSP and liquid crystal techniques, TSP is shown to have limited capabilities when acquiring highly resolved detailed heat transfer coefficient distributions.


Author(s):  
C. Neil Jordan ◽  
Lesley M. Wright

An alternative to ribs for internal heat transfer enhancement of gas turbine airfoils is dimpled depressions. Relative to ribs, dimples incur a reduced pressure drop, which can increase the overall thermal performance of the channel. This experimental investigation measures detailed Nusselt number ratio distributions obtained from an array of V-shaped dimples (δ / D = 0.30). Although the V-shaped dimple array is derived from a traditional hemispherical dimple array, the V-shaped dimples are arranged in an in-line pattern. The resulting spacing of the V-shaped dimples is 3.2D in both the streamwise and spanwise directions. A single wide wall of a rectangular channel (AR = 3:1) is lined with V-shaped dimples. The channel Reynolds number ranges from 10,000–40,000. Detailed Nusselt number ratios are obtained using both a transient liquid crystal technique and a newly developed transient temperature sensitive paint (TSP) technique. Therefore, the TSP technique is not only validated against a baseline geometry (smooth channel), but it is also validated against a more established technique. Measurements indicate that the proposed V-shaped dimple design is a promising alternative to traditional ribs or hemispherical dimples. At lower Reynolds numbers, the V-shaped dimples display heat transfer and friction behavior similar to traditional dimples. However as the Reynolds number increases to 30,000 and 40,000, secondary flows developed in the V-shaped concavities further enhance the heat transfer from the dimpled surface (similar to angled and V-shaped rib induced secondary flows). This additional enhancement is obtained with only a marginal increase in the pressure drop. Therefore, as the Reynolds number within the channel increases, the thermal performance also increases. While this trend has been confirmed with both the transient TSP and liquid crystal techniques, TSP is shown to have limited capabilities when acquiring highly resolved detailed heat transfer coefficient distributions.


Author(s):  
Sam Ghazi-Hesami ◽  
Dylan Wise ◽  
Keith Taylor ◽  
Peter Ireland ◽  
Étienne Robert

Abstract Turbulators are a promising avenue to enhance heat transfer in a wide variety of applications. An experimental and numerical investigation of heat transfer and pressure drop of a broken V (chevron) turbulator is presented at Reynolds numbers ranging from approximately 300,000 to 900,000 in a rectangular channel with an aspect ratio (width/height) of 1.29. The rib height is 3% of the channel hydraulic diameter while the rib spacing to rib height ratio is fixed at 10. Heat transfer measurements are performed on the flat surface between ribs using transient liquid crystal thermography. The experimental results reveal a significant increase of the heat transfer and friction factor of the ribbed surface compared to a smooth channel. Both parameters increase with Reynolds number, with a heat transfer enhancement ratio of up to 2.15 (relative to a smooth channel) and a friction factor ratio of up to 6.32 over the investigated Reynolds number range. Complementary CFD RANS (Reynolds-Averaged Navier-Stokes) simulations are performed with the κ-ω SST turbulence model in ANSYS Fluent® 17.1, and the numerical estimates are compared against the experimental data. The results reveal that the discrepancy between the experimentally measured area averaged Nusselt number and the numerical estimates increases from approximately 3% to 13% with increasing Reynolds number from 339,000 to 917,000. The numerical estimates indicate turbulators enhance heat transfer by interrupting the boundary layer as well as increasing near surface turbulent kinetic energy and mixing.


Author(s):  
Arslan Saleem ◽  
Man-Hoe Kim

The air side thermal hydraulic performance of multi-louvered aluminium fin heat exchangers is investigated. A detailed study was performed to analyse the thermal performance of air over a wide range of Reynolds number i.e. from 30 to 250. Air-side heat transfer coefficient and air pressure drop were calculated and validated over the mentioned band of Reynolds numbers. Critical Reynolds number was determined numerically and the variation in flow physics along with the thermal and hydraulic performance of microchannel heat exchanger associated with R_cri has been reported. Moreover, a parametric study of the multi-louvered aluminium fin heat exchangers was also performed for 36 heat exchanger configurations with the louver angles (19-31°), fin pitches (1.0, 1.2, 1.4 mm) and flow depths (16, 20, 24 mm); and the geometric configuration exhibiting the highest thermal performance was reported. The air-side heat transfer coefficient and pressure drop results for different geometrical configurations were presented in terms of Colburn j factor and Fanning friction factor f, as a function of Reynolds number based on louver pitch.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Gazi I. Mahmood ◽  
Carey J. Simonson ◽  
Robert W. Besant

Experiments are conducted to investigate turbulence enhancing effects of a porous mesh-screen with a sinusoidal shape normal to the flow direction inside a rectangular cross section air channel at low Reynolds numbers (i.e., Re = 1360–3800). The baseline measurements are obtained at the same channel and Reynolds numbers without the screen present. The surface of the screen pores are oriented parallel to the mean flow. Data are presented for the total and wall-static pressure drop along the channel, Nusselt number distributions on the heated wall at several constant heat rates, and air temperature distributions at the channel exit with and without (baseline cases) the screen. The heat transfer measurements are obtained with one wall heated as well as two parallel walls heated to simulate different applications for air channels in the flat plate heat exchangers. The results indicate that the ratio of screen channel to baseline Nusselt number (Nu/Nu0) and the ratio of screen channel to baseline friction factor (f/f0) increase with the Reynolds number (Re). The fully developed Nu/Nu0 is 2.0–2.5 as the fully developed f/f0 is 4.4 at 3100 < Re ≤ 3800. However, the screen channel heat convection performance index, (Nu/Nu0)/(f/f0)1/3 is only greater than 1.0 when Re > 2500 which is the design objective of reducing the pumping power and heat transfer area in the channel. Nonetheless, the screen insert is only beneficial to augment the convective heat transfer in the channel over the range of transition Reynolds number tested. The average total pressure drop across the channel and average exit air temperature suggest that the screen insert promotes good mixing of fluid across the channel for the Reynolds numbers tested.


Author(s):  
Krishnendu Saha ◽  
Shengmin Guo ◽  
Sumanta Acharya ◽  
Chiyuki Nakamata

An experimental study of the heat transfer distribution and pressure drop through a converging lattice-matrix structure has been performed. This structure represents a gas turbine blade trailing-edge cooling passage. Stationary tests were performed on a scaled up model under three Reynolds numbers (24000&lt;Re&lt;60000). To obtain the wall temperature, the narrow band liquid crystal technique was used, and the heat transfer coefficient value was obtained using the transient method. It’s found that the Nusselt number ratio (Nu/Nu0) is around 4–5, comparing to the channel flow of similar hydraulic diameter and Re, for the whole lattice-matrix structure. Under the impingement and turning areas, the ratio can be as high as 7–8. Pressure data are taken throughout the lattice structure following the flow direction. The pressure drop increases with Reynolds number and as a result there is a decrease in the thermal performance factor at higher Reynolds number. In the present study thermal performance factor is found to be around 1–1.2. For comparison, pin fin based trailing edge configuration has a typical thermal performance factor of 0.7 to 0.85 under the same Reynolds numbers.


Author(s):  
Michael Maurer ◽  
Jens von Wolfersdorf ◽  
Michael Gritsch

An experimental and numerical study was conducted to determine the thermal performance of V-shaped ribs in a rectangular channel with an aspect ratio of 2:1. Local heat transfer coefficients were measured using the steady state thermochromic liquid crystal technique. Periodic pressure losses were obtained with pressure taps along the smooth channel sidewall. Reynolds numbers from 95,000 to 500,000 were investigated with V-shaped ribs located on one side or on both sides of the test channel. The rib height-to-hydraulic diameter ratios (e/Dh) were 0.0625 and 0.02, and the rib pitch-to-height ratio (P/e) was 10. In addition, all test cases were investigated numerically. The commercial software FLUENT™ was used with a two-layer k-ε turbulence model. Numerically and experimentally obtained data were compared. It was determined that the heat transfer enhancement based on the heat transfer of a smooth wall levels off for Reynolds numbers over 200,000. The introduction of a second ribbed sidewall slightly increased the heat transfer enhancement whereas the pressure penalty was approximately doubled. Diminishing the rib height at high Reynolds numbers had the disadvantage of a slightly decreased heat transfer enhancement, but benefits in a significantly reduced pressure loss. At high Reynolds numbers small-scale ribs in a one-sided ribbed channel were shown to have the best thermal performance.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Felipe A. S. Silva ◽  
Luis Júnior ◽  
José Silva ◽  
Sandilya Kambampati ◽  
Leandro Salviano

AbstractSolar Water Heater (SWH) has low efficiency and the performance of this type of device needs to be improved to provide useful and ecological sources of energy. The passive techniques of augmentation heat transfer are an effective strategy to increase the convective heat transfer coefficient without external equipment. In this way, recent investigations have been done to study the potential applications of different inserts including wire coils, vortex generators, and twisted tapes for several solar thermal applications. However, few researchers have investigated inserts in SWH which is useful in many sectors where the working fluid operates at moderate temperatures. The longitudinal vortex generators (LVG) have been applied to promote heat transfer enhancement with a low/moderate pressure drop penalty. Therefore, the present work investigated optimal geometric parameters of LVG to enhance the heat transfer for a SWH at low Reynolds number and laminar flow, using a 3D periodical numerical simulation based on the Finite Volume Method coupled to the Genetic Algorithm optimization method (NSGA-II). The LVG was stamped over a flat plate inserted inside a smooth tube operating under a typical residential application corresponding to Reynolds numbers of 300, 600, and 900. The geometric parameters of LGV were submitted to the optimization procedure which can find traditional LVG such as rectangular-winglet and delta-winglet or a mix of them. The results showed that the application of LGVs to enhance heat transfer is an effective passive technique. The different optimal shapes of the LVG for all Reynolds numbers evaluated improved more than 50% of heat transfer. The highest augmentation heat transfer of 62% is found for the Reynolds number 900. However, the best thermo-hydraulic efficiency value is found for the Reynolds number of 600 in which the heat transfer intensification represents 55% of the pressure drop penalty.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Ing Jiat Kendrick Wong ◽  
Ngieng Tze Angnes Tiong

AbstractThis paper presents the numerical study of thermal performance factor of Al2O3-Cu/water hybrid nanofluid in circular and non-circular ducts (square and rectangular). Turbulent regime is studied with the Reynolds number ranges from 10000 to 100000. The heat transfer performance and flow behaviour of hybrid nanofluid are investigated, considering the nanofluid volume concentration between 0.1 and 2%. The thermal performance factor of hybrid nanofluid is evaluated in terms of performance evaluation criteria (PEC). This present numerical results are successfully validated with the data from the literature. The results indicate that the heat transfer coefficient and Nusselt number of Al2O3-Cu/water hybrid nanofluid are higher than those of Al2O3/water nanofluid and pure water. However, this heat transfer enhancement is achieved at the expense of an increased pressure drop. The heat transfer coefficient of 2% hybrid nanofluid is approximately 58.6% larger than the value of pure water at the Reynolds number of 10000. For the same concentration and Reynolds number, the pressure drop of hybrid nanofluid is 4.79 times higher than the pressure drop of water. The heat transfer performance is the best in the circular pipe compared to the non-circular ducts, but its pressure drop increment is also the largest. The hybrid nanofluid helps to improve the problem of low heat transfer characteristic in the non-circular ducts. In overall, the hybrid nanofluid flow in circular and non-circular ducts are reported to possess better thermal performance factor than that of water. The maximum attainable PEC is obtained by 2% hybrid nanofluid in the square duct at the Reynolds Number of 60000. This study can help to determine which geometry is efficient for the heat transfer application of hybrid nanofluid.


1999 ◽  
Vol 121 (3) ◽  
pp. 558-568 ◽  
Author(s):  
M. B. Kang ◽  
A. Kohli ◽  
K. A. Thole

The leading edge region of a first-stage stator vane experiences high heat transfer rates, especially near the endwall, making it very important to get a better understanding of the formation of the leading edge vortex. In order to improve numerical predictions of the complex endwall flow, benchmark quality experimental data are required. To this purpose, this study documents the endwall heat transfer and static pressure coefficient distribution of a modern stator vane for two different exit Reynolds numbers (Reex = 6 × 105 and 1.2 × 106). In addition, laser-Doppler velocimeter measurements of all three components of the mean and fluctuating velocities are presented for a plane in the leading edge region. Results indicate that the endwall heat transfer, pressure distribution, and flowfield characteristics change with Reynolds number. The endwall pressure distributions show that lower pressure coefficients occur at higher Reynolds numbers due to secondary flows. The stronger secondary flows cause enhanced heat transfer near the trailing edge of the vane at the higher Reynolds number. On the other hand, the mean velocity, turbulent kinetic energy, and vorticity results indicate that leading edge vortex is stronger and more turbulent at the lower Reynolds number. The Reynolds number also has an effect on the location of the separation point, which moves closer to the stator vane at lower Reynolds numbers.


Sign in / Sign up

Export Citation Format

Share Document