Detailed Experimental Characterization of Heat Transfer Coefficient Over the Internal Cooling Passages of an Additive Manufactured Turbine Airfoil

Author(s):  
Sin Chien Siw ◽  
Minking K. Chyu ◽  
Jae Y. Um ◽  
Ching-Pang Lee

This report describes the detailed experimental study to characterize the local heat transfer coefficient distribution over the internal cooling passages of a simplified generic airfoil. The airfoil is manufactured through additive manufacturing based on actual geometry and dimensions (1X scale model) of row one airfoil, applicable in large gas turbine system. At the mainbody section, the serpentine channel consists of three passages without any surface features or vortex generators. Both the leading edge and trailing edge sections are subjected to direct impingement. The trailing edge section is divided into three chambers, separated by two rows of blockages. This study employs the well-documented transient liquid crystal technique, where the local heat transfer coefficient on both pressure and suction sides is deduced. The experiments were performed at varying Reynolds number, ranging from approximately 31,000–63,000. The heat transfer distribution on the pressure side and suction side is largely comparable in the first and third pass, except for the second pass. Highest heat transfer occurs at the trailing edge region, which is ultimately dominated by impingement due to the presence of three rows of blockages. A cursory numerical calculation is performed using commercially available software, ANSYS CFX to obtain detailed flow field distribution within the airfoil, which explains the heat transfer behavior at each passage. The flow parameter results revealed that the pressure ratio is strongly proportional with increasing Reynolds number.

1999 ◽  
Vol 121 (4) ◽  
pp. 811-818 ◽  
Author(s):  
S.-S. Hsieh ◽  
J.-T. Huang ◽  
C.-F. Liu

The influence of rotation and jet mass flow rate on the local heat transfer coefficient for a single confined impinging round jet with a fixed jet-to-wall spacing of H/d = 5 was studied for the jet Reynolds number from 6500 to 26,000 and the rotational Reynolds number from 0 to 112,000. The local heat transfer coefficient along the surface is measured and the effect of the rotation on the stagnation (peak) point, local and average Nusselt number, is presented and discussed. Furthermore, a correlation was developed for the average Nusselt number in terms of the parameters of Rej and ReΩ. In general, the combined jet impingement and rotation effect are shown to affect the heat transfer response. Rotation decreases the average Nusselt number values from 15 to 25 percent in outward and inward radial flow, respectively. Finally, comparisons of the present data with existing results for multijets with rotation were also made.


2008 ◽  
Vol 130 (10) ◽  
Author(s):  
Jorge C. Lallave ◽  
Muhammad M. Rahman

This paper presents the results of the numerical simulation of conjugate heat transfer during a semiconfined liquid jet impingement on a uniformly heated spinning solid disk of finite thickness and radius. This study considered various disk materials, namely, aluminum, copper, silver, Constantan, and silicon; covering a range of Reynolds number (220–900), Ekman number (7.08×10−5–∞), nozzle-to-target spacing (β=0.25–1.0), disk thicknesses to nozzle diameter ratio (b∕dn=0.25–1.67), and Prandtl number (1.29–124.44) using ammonia (NH3), water (H2O), flouroinert (FC-77), and oil (MIL-7808) as working fluids. The solid to fluid thermal conductivity ratio was 36.91–2222. A higher thermal conductivity plate material maintained a more uniform interface temperature distribution. A higher Reynolds number increased the local heat transfer coefficient. The rotational rate also increased the local heat transfer coefficient under most conditions.


2001 ◽  
Author(s):  
M. K. Chyu ◽  
O. B. Ojo ◽  
C. H. Yen ◽  
R. S. Nordlund

Abstract An innovative design of closed-loop cooling system for a stator airfoil consists of a number of internal cooling passages wrapping around both pressure and suction sides of the airfoil. The cooling passages feature (1) jet impingement post a sharp 90-degree turn at the passage inlet, (2) turbulators on the outermost wall, and (3) a nearly 180-degree turn in the trailing edge. In addition, the passage has an irregular cross-section and varies throughout its entire length. A series of heat transfer tests have been performed at Re = 17,000 ∼ 61,000, compared to this tests which uses a new approach, so-called the hybrid liquid crystal technique. The magnitude of local heat transfer coefficient rises sharply in three regions. The first maximum occurs in the region subjected to direct jet impingement as the flow turns into the channel. Compounded with the inlet effect, this maximum, in fact, is the highest heat transfer coefficient over the entire passage. The second and third peaks, both are comparable in magnitude, locate near the trailing edge of the airfoil where the flow experiences a 180-degree turn and near the passage exit with a 90-degree turn. The average value of heat transfer coefficient over the entire passage is about 1.9∼ 2.5 times higher than that with fully developed turbulent flow in a straight channel. This level of enhancement is comparable to that of the conventional ribturbulators with a 90-degree angle-of-attack.


1985 ◽  
Vol 107 (2) ◽  
pp. 321-326 ◽  
Author(s):  
E. M. Sparrow ◽  
G. T. Geiger

Wind tunnel experiments were performed to determine both the average heat transfer coefficient and the radial distribution of the local heat transfer coefficient for a circular disk facing a uniform oncoming flow. The experiments covered the range of Reynolds numbers Re from 5000 to 50,000 and were performed using the naphthalene sublimation technique. To complement the experiments, an analysis incorporating both potential flow theory and boundary layer theory was used to predict the stagnation point heat transfer. The measured average Nusselt numbers definitively resolved a deep disparity between information from the literature and yielded the correlation Nu = 1.05 Pr0.36 Re1/2. The radial distributions of the local heat transfer coefficient were found to be congruent when they were normalized by Re1/2. Furthermore, the radial profiles showed that the local coefficient takes on its minimum value at the stagnation point and increases with increasing radial distance from the center of the disk. At the outer edge of the disk, the coefficient is more than twice as large as that at the stagnation point. The theoretical predictions of the stagnation point heat transfer exceeded the experimental values by about 6 percent. This overprediction is similar to that which occurs for cylinders and spheres in crossflow.


Sign in / Sign up

Export Citation Format

Share Document