Development and Validation of an On-Wing Engine Thrust Measurement System

Author(s):  
Marc Bauer ◽  
Jens Friedrichs ◽  
Detlev Wulff ◽  
Christian Werner-Spatz

Maintenance on aircraft engines is usually performed on an on-condition basis. Monitoring the engine condition during operation is an important prerequisite to provide efficient maintenance. Engine Condition Monitoring (ECM) has thus become a standard procedure during operation. One of the most important parameters, the engine thrust, is not directly measured, however, and can therefore not be monitored, which makes it difficult to distinguish whether deteriorating trends e.g. in fuel comsumption must be attributed to the engine (e.g. due to thermodynamic wear) or to the aircraft (e.g. due to increased drag). Being able to make this distinction would improve troubleshooting and maintenance planning and thus help to reduce the cost of ownership of an aircraft. As part of the research project APOSEM (Advanced Prediction of Severity effects on Engine Maintenance), Lufthansa Technik (LHT) and the Institute of Jet Propulsion and Turbomachinery of Technische Universität Braunschweig develop a method for direct measurement of engine thrust during the operation. In this paper, the design process of the On-Wing (OW) Measurement System is presented, including the validation in labratory tests, the mechanical and thermal calibration as well as the final ground test during an engine test run at LHT test cell and the work on the flight test certification.

Author(s):  
Marc Bauer ◽  
Jens Friedrichs ◽  
Detlev Wulff ◽  
Christian Werner-Spatz

Aircraft engine maintenance is performed on an on-condition basis. Monitoring the engine condition during operation is important to provide an efficient maintenance. Engine Condition Monitoring has thus become a standard procedure during operation. However, one of the most important parameters, the engine thrust, is not directly measured and can therefore not be monitored, which makes it difficult to distinguish whether deteriorating trends e.g. in fuel comsumption must be attributed to the engine (e.g. due to thermodynamic wear) or to the aircraft (e.g. due to increased drag). Being able to make this distinction would improve troubleshooting and maintenance planning and thus help to reduce the cost of ownership of an aircraft. This paper describes the development and quality assessment of a system for direct engine thrust measurement during the normal engine operation. The system was designed, calibrated and validated with engine test runs. After the necessary certification of the whole system a flight test campaign to validate the system, when installed on an aircraft, was started. In the presented work an assessment of the quality of measured data from the first period of the ongoing flight test is presented.


2014 ◽  
Vol 9 (0) ◽  
pp. 3406025-3406025 ◽  
Author(s):  
Daisuke KUWAHARA ◽  
Yushi KOYAMA ◽  
Shuhei OTSUKA ◽  
Takamichi ISHII ◽  
Hiroki ISHII ◽  
...  

2018 ◽  
Vol 41 (4) ◽  
pp. 1149-1159
Author(s):  
Yonghua Lu ◽  
Jing Li ◽  
Xiang Zhang ◽  
Yang Li

For measuring the thrust of combined nozzles in satellite thruster with a small space, the test method that the nozzle directly sprays on the load baffle is employed in this paper. The key problem is how to design the positions of 10 load baffles and how to construct the measurement system. A set of complete and automatic nozzle thrust measurement system is designed and built, and the influence of the load baffle applied on the flow field of nozzles is analyzed using the software FLUENT. Furthermore, the load surface locations of the sensors for the different types of nozzles are analyzed. We draw the conclusion that the load baffle position should range from 4–8 mm for the I-type nozzle and range in 6–12 mm for II-type and III-type nozzle. The correction coefficients of the thrust forces for all channels of the measurement system are determined in the calibration experiment. The uncertainty of measurement system is estimated and the error source of the measurement system is traced. We found that the systematic uncertainty is mainly contributed by the A-type uncertainty which is related with the nozzle dimension and its inner structure. The B-type uncertainty of system is contributed by the force sensor.


Author(s):  
Zhongkai Zhang ◽  
Guanrong Hang ◽  
Jiayun Qi ◽  
Zun Zhang ◽  
Zhe Zhang ◽  
...  

Author(s):  
Xinru Du ◽  
Jianjun Wu ◽  
Yang Ou ◽  
Jian Li ◽  
Biqi Wu

Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3014 ◽  
Author(s):  
Artur Kurnyta ◽  
Wojciech Zielinski ◽  
Piotr Reymer ◽  
Krzysztof Dragan ◽  
Michal Dziendzikowski

This paper presents the preparation and execution of on-ground static and engine load tests for the composite unmanned aerial vehicle (UAV). The test was conducted for pre-flight structural strength verification of the remotely piloted aerial target named HORNET, after introducing some structural modifications. The ground tests were performed before the flight test campaign, to ensure the strength and operational safety of the modified structure. The panel method and Computer Aided Design (CAD) modelling were adopted for numerical evaluation of aerodynamic and inertial forces’ distribution to simulate loading scenarios for launch, flight and parachute deploying conditions during the static test. Then, the multi-stage airframe static test was prepared and executed with the use of a designed modular test rig, artificial masses, as well as a wireless strain measurement system to perform structure verification. The UAV was investigated with 150% of the typical load spectrum. Furthermore, an engine test was also conducted on a ground test stand to verify strain and vibration levels in correspondence to engine speed, as well as the reliability of data link and the lack of its interferences with wireless control and telemetry. In the article, data achieved from the numerical and experimental parts of the test are discussed, as well as post-test remarks are given.


Sign in / Sign up

Export Citation Format

Share Document