thrust forces
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 33)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Daniel Svensson ◽  
Tobias Andersson ◽  
Andreas Andersson Lassila

Abstract This paper presents finite element simulations of indexable drilling of AISI4140 workpieces. The Coupled-Eulerian-Lagrangian framework is employed and the focus is to predict the drilling torque around the hole axis, thrust force, temperature distributions and chip geometries. The cutting process is modelled separately for peripheral and central insert. Then, the total thrust force and torque are predicted by superposing the predicted result for each insert. Experiments and simulations are conducted at a constant rotational velocity of 2400 rpm and feed rates of 0.13, 0.16 and 0.18 mm/rev. While the predicted torques are in excellent agreement, the thrust forces showed discrepancies of 12 - 20% to the experimental measured data. Effects of the friction modelling on the predicted torque and thrust force are outlined and possible reasons for the thrust force discrepancies are discussed in the paper. Additionally, the simulations indicate that the tool and workpiece temperature distributions are virtually unaffected by the feed rate.


2021 ◽  
Vol 2021 (4) ◽  
pp. 4791-4796
Author(s):  
THONGCHAI PANGJUNDEE ◽  
◽  
APIWAT MUTTAMARA ◽  

Friction drilling is a process of using the friction between the rotating conical tool and the workpiece to generate heat and deform the work piece’s material and penetrate the hole. The softened material is pushed sideward and downward to make the bushing. This paper aimed to study the influence of friction drilling parameters. Thrust forces and torque forces were analysed. Experiments were carried out with a friction drill tool made of tungsten carbide on titanium grade Ti-6Al-4V. The parameters used in this study were spindle speed and feed rate. It was found that the thrust force and torque decreased with increased spindle speed and with decrease of feed parameters. The microstructure reveals that deformed grains at hole’s surface relate to hardness on the cross-section of workpiece. The highest value of microhardness was 813.2 HV and reduced to the original hardness of the matrix material.


Author(s):  
Cyril Tous ◽  
Ning Li ◽  
Ivan P. Dimov ◽  
Samuel Kadoury ◽  
An Tang ◽  
...  
Keyword(s):  

2021 ◽  
Vol 13 (10) ◽  
pp. 168781402110524
Author(s):  
Weihao Guo ◽  
Liming Wang ◽  
Jianfeng Li ◽  
Wenxiang Li ◽  
Fangyi Li ◽  
...  

Root canal preparation is a vital procedure during the treatment of pulposis and periapical periodontitis. However, the improper control of thrust force and torque in root canal preparation will cause nerve damage and cell necrosis. The aim of this study was to investigate and optimize the main factors influencing thrust force and torque and to establish an efficient predictive model for root canal preparation. This study was conducted on fresh bovine bones due to the similarity of structure and density with human teeth. A novel experimental platform was first built to measure the force and torque in canal preparation of different parameters. The effect of the experimental results on thrust force and torque was investigated based on Analysis of variance (ANOVA). The results indicated that the diameter of instrument, width of root canal, and feed rate are the most significant factors influencing the thrust forces and torque ( p < 0.05). Based on the above experiments, a Radial Basis Function Neural Network (RBFN) model was established to predict the thrust force and torque in a wider range of parameters. In confirmation tests, RBFN showed an excellent predictive model for prediction of thrust force and torque (error less than 14%) in canal preparation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tushar Dhote ◽  
◽  
Rahul A Mali ◽  
Jitendra Katiyar ◽  
Gupta T V K ◽  
...  

Haynes 25 is a cobalt based superalloy gaining its importance in aerospace, heat treatment applications, chemical handling equipment, commercial gas turbine engines, bearing material, etc. This alloy is featured with low thermal conductivity, wear and corrosion resistance, strength with good resistance to oxidation at high temperatures. In the present study, optimization of process parameters in turning Haynes 25 alloy with uncoated and coated carbide tools under the minimum quantity lubrication (MQL) using Taguchi based grey relational analysis (GRA) method is attempted. The influence of cutting parameters and nano-particle concentration on surface roughness, tool wear, cutting and thrust forces are analyzed to improve the alloy machinability. The work also compares the responses obtained with uncoated and coated tool inserts and analyzes the effect of nano-particle concentration. Further, the experimental cutting and thrust forces are computed and validated using FE based DEFORM 3D software. The results obtained through simulation are in good accordance with experimental data within an average relative error of about 12 %.


Author(s):  
Osama S. Hussien

Abstract The thrust block is one of the most widely recognized methods of resisting thrust forces. This type of infrastructure should be installed in bends, dead ends, tees and wyes. Thrust blocks perform the function of transferring thrust force to the ground safely. Thrust block dimensions are designed based on hydrostatic pressures, bend angles, and soil properties in the surrounding area. Several codes exist for designing thrust blocks, but we focus on Egyptian code for design and implementation of pipelines for drinking water and sewage networks (ECDIPWSN) and the American Water Works Association (AWWA). In this methodology, the steps of thrust block design by the codes are demonstrated and applied individually to one of the published papers. The goal of the study is to find the optimum percentages between the dimensions of the block in the two codes and to compare the quantity of concrete after the block is designed by each code. Based on the research, it was found that the concrete amount of the block designed by (AWWA) is smaller than that designed by (ECDIPWSN). HIGHLIGHT Results of the study discovered the volume of the thrust block created by the AWWA method was smaller than the volume created by the ECDIPWSN method when excavation depth was low but was larger when excavation depth was large.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Y. Sesharao ◽  
T. Sathish ◽  
Kumaran Palani ◽  
Anjibabu Merneedi ◽  
Natrayan L ◽  
...  

This optimization investigation focused on the reinforced metal matrix composite of aluminium alloy. Novel of this work is to fabricate the AA6066 composite with HSS and Cu, continually conduct machining tests, and evaluate the tool wear, surface roughness, and thrust force of the stir-casted specimens. The aluminium composite has 90 percentage of AA6066 alloy reinforcement with six percentage of high-speed steel and four percentage of copper alloy made by the casting method. The fabricated composites’ turning parameters were optimized through the Taguchi method. The turning operation can be done with the help of the normal lathe with the CBN insert tool. The operation parameters such as feed, depth of cut, and steam pressure of the cutting fluid were considered with three different equal intervals in each parameter. In this investigation, the L9 orthogonal array method is used to identify the optimum values of the turning parameters among the considered machining parameters concerning the response such as wear on the turning tool and thrust forces created on machining. The outcome based on the parameters was identified and mentioned as the rank order for individual and combination of all responses with different conditions. Then, the separate and combined optimized input parameters were provided as the conclusion.


Author(s):  
Varatharajan Prasannavenkadesan ◽  
Ponnusamy Pandithevan

Compression plates are widely used in orthopaedic surgeries for internal fixation of fractured femurs. To fix the plate and thus to provide compression to a fracture, the self-tapping bone screws are tightened through predrilled pilot holes of smaller diameter. Preliminary investigation showed that the holes drilled with the inappropriate cutting parameters cause mechanical and thermal damages to the local host bone, which further lead to loosening of internal fixations. In this paper, the mechanistic models to predict the thrust forces and torques during bone drilling were developed, using a 3.20 mm diameter drill bit. As a procedure, the cutting action was investigated at three different regions of the drill point, namely cutting lips, secondary cutting edges and indentation zone. The models employed the analytical approach to account for the drill-bit geometry and cutting parameters, and an empirical approach to account for the material and friction properties. To complete the procedure, calibration experiments were conducted on bovine cortical femurs with two different spindle speeds (1000 and 3000 r/min) and feeds (0.03 and 0.06 mm/rev), and then the specific normal and friction coefficients were determined. The developed mechanistic models were validated with different ranges of parameters (500–3500 r/min speeds, and 0.02–0.07 mm/rev feeds) those commonly involved in manual and robot-assisted surgery. The validation study revealed that the thrust forces predicted using the mechanistic models showed a maximum error of only 5.80%. However, the torques predicted from the mechanistic model found with more error than the thrust forces. The predominant reasons for this under-prediction might because of the extrapolation used to determine the specific cutting pressures, slip-line field applied to the indentation zone instead of compressive fracture, and chip clogging involved during the bone drilling as demonstrated in earlier studies. Despite the deviations, the developed mechanistic models satisfactorily follow the trends of the thrust forces and torques experienced during bone drilling. The outcomes can be used to practice the bone drilling procedure and monitor the effect of process parameters on thrust forces and torques in the in-silico environment before performing actual surgery.


2021 ◽  
Author(s):  
Mojtaba Kamarlouei ◽  
Thiago S. Hallak ◽  
Jose F. Gaspar ◽  
C. Guedes Soares

Abstract This paper presents the numerical and experimental study of a new spring mechanism adapted to a cone-shaped point absorber wave energy converter (WEC). The WEC is intended to be hinged to a floating wind platform with a long arm to create a combined wind and wave harvesting concept. The main objective of the spring mechanism is to improve the platform restoring moments against the wind thrust forces, generated by the wind turbine while contributing to wave energy harvesting. However, the study is presented for the case where the WEC dynamics is investigated outside the platform and attached to a fixed frame, to validate the mathematical model of the WEC concept. Moreover, the impact on the power harvesting performance is investigated with and without negative springs in this scenario.


Author(s):  
Michael Conward ◽  
Johnson Samuel

Abstract This two-part paper is aimed at developing a microstructure-based mechanistic modeling framework to predict the cutting forces and acoustic emissions generated during bone sawing. The modeling framework is aimed at the sub-radius cutting condition that dominates chip-formation mechanics during the bone sawing process. Part-1 of this paper deals specifically with the sawing experiments and modeling of the cutting/thrust forces. The model explicitly accounts for key microstructural constituents of the bovine bone (viz., osteon, interstitial matrix, lamellar bone, and woven bone). The cutting and thrust forces are decomposed into their shearing and ploughing components. Microstructure-specific shear stress values critical to the model calculations are estimated using micro-scale orthogonal cutting tests. This approach of estimating the microstructure-specific shear stress overcomes a critical shortcoming in the literature related to high-strain rate characterization of natural composites, where the separation of the individual constituents is difficult. The six model coefficients are calibrated over a range of clinically relevant depth-of-cuts using pure haversian regions (comprising of osteon and interstitial matrix), and pure plexiform regions (comprising of lamellar bone and woven bone). The calibrated model is then used to make predictions in the transition region between the haversian and plexiform bone, which is characterized by gradient structures involving varying percentages of osteon, interstitial matrix, lamellar bone, and woven bone. The mean absolute percentage error in the force predictions is under 10 % for both the cutting and thrust forces.


Sign in / Sign up

Export Citation Format

Share Document