Comparison of Modelling Approaches for Bump-Type Foil Thrust Bearings Operating With CO2

Author(s):  
Kan Qin ◽  
Daijin Li ◽  
Kai Luo ◽  
Zhansheng Tian ◽  
Ingo H. Jahn

Different forms of Reynolds equation are widely used to predict the performances of foil thrust bearings for air cycle machines. When analyzing bearings operating with highly dense CO2, computational fluid dynamics yields more accurate results, particularly at the high rotational speed. In addition, the structural deformation of the top and bump foils are also considered. For some applications, the high temperature increase caused by the viscous heating effect are also modelled in literature. The multi-physics effects within foil bearings, including the fluid flow, structural deformation and viscous heating create challenges and modelling complexity to accurately predict its performances. The aim of this paper is to review and compare different modelling approaches for foil thrust bearings with CO2 at a range of operating conditions, including loads and rotational speed. For steady state performances, results from turbulent Reynolds equation and computational fluid dynamics are in close agreement for foil thrust bearings operating with low load (large rotor to top foil separations). However, considerable differences exist between turbulent Reynolds equation and computational fluid dynamics method at high loads (small rotor to top foil separation). Here the computational fluid dynamics method must be employed, as the centrifugal inertia effect becomes significant. The top foil deflection need to be considered as the corresponding deformation is significant compared to the initial separation between the rotor and the top foil. At the rotational speed larger than 30000 rpm, the results from the fully fluid-structure-thermal simulations differ from other modelling approaches. The additional deformation caused by temperature increase largely alters the separation between the rotor and top foil. For dynamic performance, the top foil deflection again must be considered as the equivalent stiffness and damping are influenced by bump foil structures. This work provides recommendations for the selection of the suitable modelling approaches for bump-type foil thrust bearings operating with supercritical CO2.

Author(s):  
Jianbo Zhang ◽  
Chunxiao Jiao ◽  
Donglin Zou ◽  
Na Ta ◽  
Zhushi Rao

The solution of Reynolds equation and computational fluid dynamics are widely employed for the lubrication performance analysis of aerostatic thrust bearing. However, the solution of Reynolds equation may be inaccurate and cannot present detailed performance near orifice, while computational fluid dynamics method has low computational efficiency with time consumption in mesh generation and solving Navier–Stokes equations. In order to overcome the drawbacks of Reynolds equation and computational fluid dynamics, based on the method of separation of variables, a semianalytical method is developed for describing the characteristics of aerostatic bearings available. The method of separation of variables considering the initial and viscous effect is more accurate than the Reynolds equation and can present detailed performance near orifice in the aerostatic thrust bearings, while method of separation of variables has great computational efficiency compared to computational fluid dynamics. Meanwhile, the pressure distribution calculated by method of separation of variables is compared to the published experimental data and the results obtained by computational fluid dynamics. The comparative results indicate validity of the method. Furthermore, the influences of flow and geometry parameters, such as supply pressure, orifice diameter, film thickness, and bearing radius, on the characteristics of aerostatic thrust bearings with single orifice are studied. The results show that there exists pressure depression phenomenon near orifice. The depression phenomenon is strengthened with increase of film thickness and supply pressure and decrease of orifice diameter and bearing radius, while the maximum speed increases with strengthening of pressure depression due to decrease of minimum local pressure near orifice. Moreover, the bearing capacity increases with increase of supply pressure, orifice diameter, and bearing radius and decreases with increase of film thickness, while mass flow rate increases with supply pressure, orifice diameter, and film thickness and it is not sensitive to bearing radius.


Author(s):  
Chengwei Wen ◽  
Xianghui Meng ◽  
Wenxiang Li

The Reynolds equation, in which some items have been omitted, is a simplified form of the Navier–Stokes equations. When surface texturing exists, it may unreasonably reveal the tribological effects in some cases. In this paper, both the two-dimensional computational fluid dynamics method, which is based on the Navier–Stokes equations, and the corresponding one-dimensional Reynolds method are adopted to analyze the performance of the textured piston compression ring conjunction. To conduct a comparison between these two methods, the modified Elrod algorithm for Jakobsson–Floberg–Olsson cavitation model is chosen to solve the Reynolds equation. The results show that the Reynolds method is somewhat different from the computational fluid dynamics method in the minimum oil film thickness, pressure distribution, and cavitation at given operating conditions. Moreover, for a low ratio of texture depth to length, the Reynolds equation is still suitable to predict the overall effects of the designed groove textures. The simulation results also reveal that it is not always beneficial for the tribological performance and sometimes may increase the total friction force when the ring is textured.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
C. I. Papadopoulos ◽  
L. Kaiktsis ◽  
M. Fillon

The paper presents a detailed computational study of flow patterns and performance indices in a dimpled parallel thrust bearing. The bearing consists of eight pads; the stator surface of each pad is partially textured with rectangular dimples, aiming at maximizing the load carrying capacity. The bearing tribological performance is characterized by means of computational fluid dynamics (CFD) simulations, based on the numerical solution of the Navier–Stokes and energy equations for incompressible flow. Realistic boundary conditions are implemented. The effects of operating conditions and texture design are studied for the case of isothermal flow. First, for a reference texture pattern, the effects of varying operating conditions, in particular minimum film thickness (thrust load), rotational speed and feeding oil pressure are investigated. Next, the effects of varying texture geometry characteristics, in particular texture zone circumferential/radial extent, dimple depth, and texture density on the bearing performance indices (load carrying capacity, friction torque, and friction coefficient) are studied, for a representative operating point. For the reference texture design, the effects of varying operating conditions are further investigated, by also taking into account thermal effects. In particular, adiabatic conditions and conjugate heat transfer at the bearing pad are considered. The results of the present study indicate that parallel thrust bearings textured by proper rectangular dimples are characterized by substantial load carrying capacity levels. Thermal effects may significantly reduce load capacity, especially in the range of high speeds and high loads. Based on the present results, favorable texture designs can be assessed.


2013 ◽  
Vol 662 ◽  
pp. 586-590
Author(s):  
Gang Lu ◽  
Qing Song Yan ◽  
Bai Ping Lu ◽  
Shuai Xu ◽  
Kang Li

Four types of Super Typhoon drip emitter with trapezoidal channel were selected out for the investigation of the flow field of the channel, and the CFD (Computational Fluid Dynamics) method was applied to simulate the micro-field inside the channel. The simulation results showed that the emitter discharge of different turbulent model is 4%-14% bigger than that of the experimental results, the average discharge deviation of κ-ω and RSM model is 5, 4.5 respectively, but the solving efficiency of the κ-ω model is obviously higher than that of the RSM model.


2012 ◽  
Vol 248 ◽  
pp. 391-394
Author(s):  
Wen Zhou Yan ◽  
Wan Li Zhao ◽  
Qiu Yan Li

By using the computational fluid dynamics code, FLUENT, Numerically simulation is investigated for Youngshou power plant. Under the constant ambient temperature, the effects of different wind speed and wind direction on the thermal flow field are qualitatively considered. It was found that when considering about the existing and normally operating power plants, the thermal flow field is more sensitive to wind direction and wind speed. Based on the above results, three improved measures such as: increasing the wind-wall height and accelerating the rotational speed of the fans near the edge of the ACC platform and lengthen or widen the platform are developed to effectively improving the thermal flow field, and enhanced the heat dispersal of ACC.


2021 ◽  
Vol 159 ◽  
pp. 106990
Author(s):  
Wanfu Zhang ◽  
Kexin Wu ◽  
Chengjing Gu ◽  
Haoyang Tian ◽  
Xiaobin Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document