A semianalytical method for studying the performances of aerostatic thrust bearing

Author(s):  
Jianbo Zhang ◽  
Chunxiao Jiao ◽  
Donglin Zou ◽  
Na Ta ◽  
Zhushi Rao

The solution of Reynolds equation and computational fluid dynamics are widely employed for the lubrication performance analysis of aerostatic thrust bearing. However, the solution of Reynolds equation may be inaccurate and cannot present detailed performance near orifice, while computational fluid dynamics method has low computational efficiency with time consumption in mesh generation and solving Navier–Stokes equations. In order to overcome the drawbacks of Reynolds equation and computational fluid dynamics, based on the method of separation of variables, a semianalytical method is developed for describing the characteristics of aerostatic bearings available. The method of separation of variables considering the initial and viscous effect is more accurate than the Reynolds equation and can present detailed performance near orifice in the aerostatic thrust bearings, while method of separation of variables has great computational efficiency compared to computational fluid dynamics. Meanwhile, the pressure distribution calculated by method of separation of variables is compared to the published experimental data and the results obtained by computational fluid dynamics. The comparative results indicate validity of the method. Furthermore, the influences of flow and geometry parameters, such as supply pressure, orifice diameter, film thickness, and bearing radius, on the characteristics of aerostatic thrust bearings with single orifice are studied. The results show that there exists pressure depression phenomenon near orifice. The depression phenomenon is strengthened with increase of film thickness and supply pressure and decrease of orifice diameter and bearing radius, while the maximum speed increases with strengthening of pressure depression due to decrease of minimum local pressure near orifice. Moreover, the bearing capacity increases with increase of supply pressure, orifice diameter, and bearing radius and decreases with increase of film thickness, while mass flow rate increases with supply pressure, orifice diameter, and film thickness and it is not sensitive to bearing radius.

2013 ◽  
Vol 365-366 ◽  
pp. 304-308
Author(s):  
Lei Wang

An analysis is conducted and solutions are provided for the dynamic performance of high speed hybrid thrust bearing. By adopting bulk flow theory, the turbulent Reynolds equation is solved numerically with the different orifice diameter and supply pressure. The results show that increasing supply pressure can significantly improve the bearing stiffness and damping, while the orifice diameters make a different effect on the bearing stiffness and damping.


2010 ◽  
Vol 118-120 ◽  
pp. 507-511
Author(s):  
Kai Sun ◽  
Lan Wang ◽  
Xin Jun Zhao

In this paper, the dynamic characteristics of high-speed hybrid thrust bearing with four-recesses are optimized for different orifice diameter and supply pressure at a given speed condition, the dynamic moment coefficients of hybrid thrust bearing are analyzed, considering the thrust collar angular misalignment case to determine the optimization of orifice diameter and supply pressure under a given speed. The results provide certain reference to the hybrid thrust bearings used in high speed precision spindle.


2013 ◽  
Vol 694-697 ◽  
pp. 538-542 ◽  
Author(s):  
Xiao Yan Liu ◽  
Jia Sheng Wang

The water lubrication performance of spiral groove thrust bearings was affected by different groove molded lines. The pressure fields and the load capacity of water-lubricated spiral groove thrust bearings with different groove molded lines were simulated by computational fluid dynamics. The results show that the spiral groove which can produce the best loading capacity and steadier pressure field is appropriate to water-lubricated spiral groove thrust bearing. The line spiral groove can be used for decrease the process difficult when the loading capacity require is low.


Author(s):  
Kan Qin ◽  
Daijin Li ◽  
Kai Luo ◽  
Zhansheng Tian ◽  
Ingo H. Jahn

Different forms of Reynolds equation are widely used to predict the performances of foil thrust bearings for air cycle machines. When analyzing bearings operating with highly dense CO2, computational fluid dynamics yields more accurate results, particularly at the high rotational speed. In addition, the structural deformation of the top and bump foils are also considered. For some applications, the high temperature increase caused by the viscous heating effect are also modelled in literature. The multi-physics effects within foil bearings, including the fluid flow, structural deformation and viscous heating create challenges and modelling complexity to accurately predict its performances. The aim of this paper is to review and compare different modelling approaches for foil thrust bearings with CO2 at a range of operating conditions, including loads and rotational speed. For steady state performances, results from turbulent Reynolds equation and computational fluid dynamics are in close agreement for foil thrust bearings operating with low load (large rotor to top foil separations). However, considerable differences exist between turbulent Reynolds equation and computational fluid dynamics method at high loads (small rotor to top foil separation). Here the computational fluid dynamics method must be employed, as the centrifugal inertia effect becomes significant. The top foil deflection need to be considered as the corresponding deformation is significant compared to the initial separation between the rotor and the top foil. At the rotational speed larger than 30000 rpm, the results from the fully fluid-structure-thermal simulations differ from other modelling approaches. The additional deformation caused by temperature increase largely alters the separation between the rotor and top foil. For dynamic performance, the top foil deflection again must be considered as the equivalent stiffness and damping are influenced by bump foil structures. This work provides recommendations for the selection of the suitable modelling approaches for bump-type foil thrust bearings operating with supercritical CO2.


Author(s):  
Ming Huang ◽  
Hailong Cui ◽  
Pinkuan Liu ◽  
Mengyang Li ◽  
Yueqing Zheng ◽  
...  

In this paper, the pressure distribution of aerostatic thrust bearings with vacuum pre-loading was investigated by solving the full Navier–Stokes equations based on the computational fluid dynamics method. The influences of the supply pressure, vacuum pressure, orifice diameter, and gas film thickness on the absolute pressure ratio were investigated. The finite difference method was used to study the effects of the vacuum chamber area, orifice diameter, orifice number, supply pressure, and vacuum pressure on the bearing stiffness. It is confirmed that the orifice diameter and film thickness had a great influence on the absolute pressure ratio, which increased with the reduction in the gas film thickness and the rise in the orifice diameter. The bearing stiffness can be improved by increasing the supply pressure, orifice number or vacuum chamber area or decreasing the orifice diameter or vacuum pressure, which provides useful guidance for the optimization design of aerostatic thrust bearings with vacuum preloading.


Author(s):  
Gen Fu ◽  
Alexandrina Untaroiu

Textured thrust bearings are capable of providing higher load capacity and lower friction torque compared to nontextured bearings. However, most previous optimization efforts for texturing geometry were focused on rectangular dimples and employed Reynolds equation. Limited studies have been done to investigate the effects of partially textured thrust bearings with elliptical dimples. This study proposes a new optimization approach to find the optimal partially texture geometry with elliptical dimples, which maximize the loading capacity and minimize the friction torque. In this study, a 3D computational fluid dynamics (CFD) model for a parallel sector-pad thrust bearing is built using ANSYS cfx. Mass conserving cavitation model is used to simulate the cavitation regions. Energy equation for Newtonian flow is also solved. The results of the model are validated by the experimental data from the literature. Based on this model, the flow pattern and pressure distribution inside the dimples are analyzed. The geometry of elliptical dimple is parameterized and analyzed using design of experiments (DOE). The selected geometry parameters include the length of major and minor axes, dimple depth, radial and circumferential space between two dimples, and the radial and circumferential extend. A multi-objective optimization scheme is used to find the optimal texture structure with the load force and friction torque set as objective functions. The results show that the shape of dimples has a crucial effect on the performance of the textured thrust bearings. Searching the design space for a proper combination among the design variables satisfying the constraints has the advantage of capturing the codependence among design variables and leads to a surface patterning of the bearing, which showed a 42.7% improvement on the load capacity.


Lubricants ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 44
Author(s):  
Christian Ziese ◽  
Cornelius Irmscher ◽  
Steffen Nitzschke ◽  
Christian Daniel ◽  
Elmar Woschke

The vibration behaviour of turbocharger rotors is influenced by the acting loads as well as by the type and arrangement of the hydrodynamic bearings and their operating condition. Due to the highly non-linear bearing behaviour, lubricant film-induced excitations can occur, which lead to sub-synchronous rotor vibrations. A significant impact on the oscillation behaviour is attributed to the pressure distribution in the hydrodynamic bearings, which is influenced by the thermo-hydrodynamic conditions and the occurrence of outgassing processes. This contribution investigates the vibration behaviour of a floating ring supported turbocharger rotor. For detailed modelling of the bearings, the Reynolds equation with mass-conserving cavitation, the three-dimensional energy equation and the heat conduction equation are solved. To examine the impact of outgassing processes and thrust bearing on the occurrence of sub-synchronous rotor vibrations separately, a variation of the bearing model is made. This includes run-up simulations considering or neglecting thrust bearings and two-phase flow in the lubrication gap. It is shown that, for a reliable prediction of sub-synchronous vibrations, both the modelling of outgassing processes in hydrodynamic bearings and the consideration of thrust bearing are necessary.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
C. I. Papadopoulos ◽  
L. Kaiktsis ◽  
M. Fillon

The paper presents a detailed computational study of flow patterns and performance indices in a dimpled parallel thrust bearing. The bearing consists of eight pads; the stator surface of each pad is partially textured with rectangular dimples, aiming at maximizing the load carrying capacity. The bearing tribological performance is characterized by means of computational fluid dynamics (CFD) simulations, based on the numerical solution of the Navier–Stokes and energy equations for incompressible flow. Realistic boundary conditions are implemented. The effects of operating conditions and texture design are studied for the case of isothermal flow. First, for a reference texture pattern, the effects of varying operating conditions, in particular minimum film thickness (thrust load), rotational speed and feeding oil pressure are investigated. Next, the effects of varying texture geometry characteristics, in particular texture zone circumferential/radial extent, dimple depth, and texture density on the bearing performance indices (load carrying capacity, friction torque, and friction coefficient) are studied, for a representative operating point. For the reference texture design, the effects of varying operating conditions are further investigated, by also taking into account thermal effects. In particular, adiabatic conditions and conjugate heat transfer at the bearing pad are considered. The results of the present study indicate that parallel thrust bearings textured by proper rectangular dimples are characterized by substantial load carrying capacity levels. Thermal effects may significantly reduce load capacity, especially in the range of high speeds and high loads. Based on the present results, favorable texture designs can be assessed.


1977 ◽  
Vol 99 (1) ◽  
pp. 82-88 ◽  
Author(s):  
I. Etsion ◽  
D. P. Fleming

A flat sector shaped pad geometry for gas lubricated thrust bearings is analyzed considering both pitch and roll angles of the pad and the true film thickness distribution. Maximum load capacity is achieved when the pad is tilted so as to create a uniform minimum film thickness along the pad trailing edge. Performance characteristics for various geometries and operating conditions of gas thrust bearings are presented in the form of design curves. A comparison is made with the rectangular slider approximation. It is found that this approximation is unsafe for practical design, since it always overestimates load capacity.


Author(s):  
Dongju Chen ◽  
Shuai Zhou ◽  
Jihong Han ◽  
Jinwei Fan ◽  
Qiang Cheng

The characteristic of gas film is a key factor in the performance of the aerostatic bearing. Because the gas film flow is in the slip regime, influence of the rarefied effect is significant. The modified Reynolds equation suitable for compressible gas in the rarefied effect is deduced through introducing the flow factor in the rarefied effect to the Reynolds equation. Pressure distribution, capacity, and stiffness of the gas film under the rarefied effect are analyzed. With the increase of gas pressure, the gas film capacity and stiffness of bearing would also increase. However, the greater the gas supply pressure, the more intense the gas film vibration, so it was important to select a reasonable gas supply pressure for achieving the optimal gas film characteristic. Finally, the gas rarefied effect is verified by the experiment indirectly, which agreed well with the analytical results and provided a theoretical guidance for the machining accuracy of the machine tool.


Sign in / Sign up

Export Citation Format

Share Document