compression ring
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 16)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 2118 (1) ◽  
pp. 012016
Author(s):  
J A Pabón León ◽  
J P Rojas Suárez ◽  
M S Orjuela Abril

Abstract In this research, the construction of a numerical model is proposed for the analysis of the friction processes and the thickness of the lubrication film present in the compression ring of internal combustion engines. The model is built using MATLAB software, and three load conditions are used as reference (2 Nm, 4 Nm, and 6 Nm) with a rotation speed of 3600 rpm, which correspond to a stationary single-cylinder diesel engine. Comparison between model estimates and experimental results show that the development model could predict the actual engine conditions. The deviation between the numerical model and the experimental data was 17%. It was shown that the increase in engine load causes a 16% increase in the friction force of the compression ring, which implies a 50% increase in power loss due to friction processes. In general, the model developed allows the analysis of the friction processes in the compression ring and its effect on the lubrication film, considering the leakage of the combustion gases. In this way, the construction of a more complex mathematical model is achieved, which allows improving the precision in the analyzes related to the interaction between the compression ring and the cylinder liner.


2021 ◽  
Vol 16 (2) ◽  
pp. 125-137
Author(s):  
Konstantinos Tsatsoulis ◽  
Anastasios Zavos ◽  
Pantelis G. Nikolakopoulos

Author(s):  
Robert Turnbull ◽  
Nader Dolatabadi ◽  
Ramin Rahmani ◽  
Homer Rahnejat

A novel integrated multi-physics assessment of the piston top compression ring of an internal combustion engine under normal operation mode, as well as subjected to cylinder deactivation is carried out. The methodology comprises ring-liner thermo-mixed hydrodynamics, elastodynamics of ring, as well as combustion gas blow-by and emissions. Therefore, the analysis provides prediction of ring-liner contact’s energy losses and gas power leakage across the piston and ring crevices, as well as the resulting emissions. Cylinder deactivation (CDA) technology reduces the unburnt fuel entering the ring-pack crevices, as well as the emissions. It is also shown that the frictional and gas leakage power losses are exacerbated under CDA by as much as 20%. Although this is much lower than the potential gains in fuel usage when using CDA. The optimisation of the piston compression ring would provide further fuel efficiency and improved emissions, an issue which has not hitherto received the attention which it deserves. The in-depth analysis has also shown that CDA reduces the predicted CO, NOx and HC emissions by nearly as much as 8.5%, 10% and 8.7%, respectively.


2021 ◽  
Vol 349 ◽  
pp. 04006
Author(s):  
Anastasios Zavos ◽  
Pantelis G. Nikolakopoulos ◽  
Apostolos Pesyridis ◽  
Alasdair Cairns

Turbocharged engines with direct injection offer a significant contribution to engine downsizing technology. However, there remain many unsolved and ambitious issues concerning knocking and pre-ignition. Therefore, detailed understanding of the top compression ring lubrication and fuel economy is critical. This paper focuses on the tribological performance of the top compression ring under partially lubricated conditions caused by diesel knock in a turbocharged diesel engine. A mixed-hydrodynamics model was built including multi-phase flow and asperity interactions with realistic boundary conditions. The study shows that frictional power losses in the compression ring-liner contact increased owing to diesel knock and starved conditions in a turbocharged gasoline engine. This finding indicates that the control of knocking combined with the inlet flow conditions can help to mitigate fuel economy and emissions in ring-liner conjunction.


Lubricants ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 83
Author(s):  
Jorge Duarte Forero ◽  
Guillermo Valencia Ochoa ◽  
Jhan Piero Rojas

The present study aims to analyze the influence of the geometric profile of the compression ring on the tribological properties of the lubricant. Additionally, the influence of the rotation speed and the engine load on the state of the lubricant is evaluated. For this study, a single-cylinder diesel engine is taken as the basis, from which a CAD model of the combustion chamber-piston assembly was made. In addition, the conditions in the cylinder chamber were analyzed when the engine operates at a rotation speed of 3000, 3300, 3600, and 3900 rpm, and a load of 1.5, 3.0, 4.5, and 6.0 N. The calculations were developed using the OpenFOAM® simulation software. The results obtained show that changes in the geometric profile of the ring can contribute to reducing the hydrodynamic friction force by 13% and the friction force caused by roughness by 61%. This implies a decrease in the power lost by friction. In general, the modification of the geometric profile allowed a reduction of 21% in the lost power associated with friction. Additionally, it was observed that the shape of the profile allows to reduce the pressure in the lubricant by 65% and obtain a greater thickness of the lubrication film. On average, an increase of 300 rpm and 1.5 N in the speed and load of the engine causes the friction force and power losses to increase by 45% and 10%. The above results imply that the geometric profile of the compression ring can improve tribological performance in the engine, allowing a reduction in fuel and better lubricant performance.


Sign in / Sign up

Export Citation Format

Share Document