Investigation on the Leading Edge Film Cooling of Counter-Inclined Cylindrical and Laid-Back Holes With and Without Impingement: Part I — Film Cooling Effectiveness

Author(s):  
Qi-ling Guo ◽  
Cun-liang Liu ◽  
Hui-ren Zhu ◽  
Hai-yong Liu ◽  
Rui-dong Wang ◽  
...  

Experimental investigation has been performed to study the film cooling characteristics of counter-inclined structures on the turbine vane leading edge. In this paper, four counter-inclined models are measured including cylindrical film holes with and without impingement holes, laid-back film holes with and without impingement holes. A semi-cylinder model is used to model the turbine vane leading edge. Two rows of film holes are located at ±15° on either side of the leading edge model, inclined 90° to the flow direction and 45° to the spanwise direction. Film cooling effectiveness and heat transfer coefficient have been obtained using a transient heat transfer measurement technique with double thermochromic liquid crystals with four blowing ratios ranging from 0.5 to 2 at a 1.0 density ratio. The results show that the film cooling effectiveness decreases with the increase of blowing ratio. No matter cylindrical hole or laid-back hole, the addition of impingement enhances the film cooling effectiveness. Compared with cylindrical hole, laid-back hole produces a better film cooling performance mainly because of stronger lateral momentum. Moreover, the benefits of both adding impingement and exit shaping are more obvious under a large blowing ratio.

Author(s):  
K.-S. Kim ◽  
Youn J. Kim ◽  
S.-M. Kim

To enhance the film cooling performance in the vicinity of the turbine blade leading edge, the flow characteristics of the film-cooled turbine blade have been investigated using a cylindrical body model. The inclination of the cooling holes is along the radius of the cylindrical wall and 20 deg relative to the spanwise direction. Mainstream Reynolds number based on the cylinder diameter was 1.01×105 and 0.69×105, and the mainstream turbulence intensities were about 0.2% in both Reynolds numbers. CO2 was used as coolant to simulate the effect of density ratio of coolant-to-mainstream. Furthermore, the effect of coolant flow rates was studied for various blowing ratios of 0.4, 0.7, 1.1, and 1.4, respectively. In experiment, spatially-resolved temperature distributions along the cylindrical body surface were visualized using infrared thermography (IRT) in conjunction with thermocouples, digital image processing, and in situ calibration procedures. This comparison shows the results generated to be reasonable and physically meaningful. The film cooling effectiveness of current measurement (0.29 mm × 0.33 min per pixel) presents high spatial and temperature resolutions compared to other studies. Results show that the blowing ratio has a strong effect on film cooling effectiveness and the coolant trajectory is sensitive to the blowing ratio. The local spanwise-averaged effectiveness can be improved by locating the first-row holes near the second-row holes.


2018 ◽  
Vol 35 (3) ◽  
pp. 291-303 ◽  
Author(s):  
Cun-Liang Liu ◽  
Dan Zhao ◽  
Ying-Ni Zhai ◽  
Hui-Ren Zhu ◽  
Yi-Hong He ◽  
...  

AbstractNumerical simulations have been performed on the film cooling characteristics of counter-inclined structures, which have advantage in manufacturing relative to the usually used parallel-inclined film-hole row structure, on a turbine vane leading edge model. Single row structure and dual-row structure with counter-inclined film holes were applied in the simulation of leading edge film cooling of turbine vane. The effect of jet-interaction between counter-inclined film-hole rows was studied. The distributions of film cooling effectiveness and heat transfer coefficient were obtained at blowing ratios of 1.0 and 2.0. The results of single row structure show that the film cooling performances of counter-inclined film-hole row are not weakened compared to the traditional parallel-inclined film-hole row structure. The film cooling effectiveness of the counter-inclined film-hole row structure decreases with the increase of blowing ratio, while the heat transfer coefficient increases. The jet-interaction in the dual-row film cooling structure has more notable influence on the film cooling effectiveness than the heat transfer coefficient. Compared to the single row case, the interactions between the upstream counter-blowing jets and the downstream jet improve the film coverage performance and reduce the heat transfer intensity of this downstream jet under larger blowing ratio condition.


1992 ◽  
Vol 114 (4) ◽  
pp. 716-723 ◽  
Author(s):  
S. Ou ◽  
A. B. Mehendale ◽  
J. C. Han

The effect of film hole row location on leading edge film cooling effectiveness and heat transfer coefficient under high mainstream turbulence conditions was experimentally determined for flow over a blunt body with semicylinder leading edge and a flat afterbody. Two separate cases of film injection film holes located only at ± 15 or ± 40 deg were studied. The holes were spaced three hole diameters apart in the spanwise direction and inclined 30 and 90 deg to the surface in the spanwise and streamwise directions, respectively. A bar grid (Tu = 5.07 percent), a passive grid (Tu = 9.67 percent), and a jet grid (Tu = 12.9 percent) produced high mainstream turbulence. The incident mainstream Reynolds number based on cylinder diameter was 100,000. Spanwise and streamwise distributions of film effectiveness and heat transfer coefficient in the leading edge and the flat sidewall were obtained for three blowing ratios. The results show mainstream turbulence adversely affects leading edge film effectiveness for the low blowing ratio (B = 0.4), but the effect reduces for higher blowing ratios (B = 0.8 and 1.2). The leading edge heat transfer coefficient increases with mainstream turbulence level for B = 0.4 and 0.8, but the effect is not systematic for B = 1.2. Mainstream turbulence effect is more severe for ±15 deg one-row injection than for ± 40 deg one-row injection. The surface heat load reduction for ± 15 deg one-row injection or ± 40 deg one-row injection is smaller than that for two-row injection.


Author(s):  
Bo-lun Zhang ◽  
Li Zhang ◽  
Hui-ren Zhu ◽  
Jian-sheng Wei ◽  
Zhong-yi Fu

Film cooling performance of the double-wave trench was numerically studied to improve the film cooling characteristics. Double-wave trench was formed by changing the leading edge and trailing edge of transverse trench into cosine wave. The film cooling characteristics of transverse trench and double-wave trench were numerically studied using Reynolds Averaged Navier Stokes (RANS) simulations with realizable k-ε turbulence model and enhanced wall treatment. The film cooling effectiveness and heat transfer coefficient of double-wave trench at different trench width (W = 0.8D, 1.4D, 2.1D) conditions are investigated, and the distribution of temperature field and flow field were analyzed. The results show that double-wave trench effectively improves the film cooling effectiveness and the uniformity of jet at the downstream wall of the trench. The span-wise averaged film cooling effectiveness of the double-wave trench model increases 20–63% comparing with that of the transverse trench at high blowing ratio. The anti-counter-rotating vortices which can press the film on near-wall are formed at the downstream wall of the double-wave trench. With the double-wave trench width decreasing, the film cooling effectiveness gradually reduces at the hole center-line region of the downstream trench. With the increase of the blowing ratio, the span-wise averaged heat transfer coefficient increases. The span-wise averaged heat transfer coefficient of the double-wave trench with 0.8D and 2.1D trench width is higher than that of the double-wave trench with 1.4D trench width at the high blowing ratio conditions.


Author(s):  
Zhonghao Tang ◽  
Gongnan Xie ◽  
Honglin Li ◽  
Wenjing Gao ◽  
Chunlong Tan ◽  
...  

Abstract Film cooling performance of the cylindrical film holes and the bifurcated film holes on the leading edge model of the turbine blade are investigated in this paper. The suitability of different turbulence models to predict local and average film cooling effectiveness is validated by comparing with available experimental results. Three rows of holes are arranged in a semi-cylindrical model to simulate the leading edge of the turbine blade. Four different film cooling structures (including a cylindrical film holes and other three different bifurcated film holes) and four different blowing ratios are studied in detail. The results show that the film jets lift off gradually in the leading edge area as the blowing ratio increases. And the trajectory of the film jets gradually deviate from the mainstream direction to the spanwise direction. The cylindrical film holes and vertical bifurcated film holes have better film cooling effectiveness at low blowing ratio while the other two transverse bifurcated film holes have better film cooling effectiveness at high blowing ratio. And the film cooling effectiveness of the transverse bifurcated film holes increase with the increasing the blowing ratio. Additionally, the advantage of transverse bifurcated holes in film cooling effectiveness is more obvious in the downstream region relative to the cylindrical holes. The Area-Average film cooling effectiveness of transverse bifurcated film holes is 38% higher than that of cylindrical holes when blowing ratio is 2.


Author(s):  
Rui-dong Wang ◽  
Cun-liang Liu ◽  
Hai-yong Liu ◽  
Hui-ren Zhu ◽  
Qi-ling Guo ◽  
...  

Heat transfer of the counter-inclined cylindrical and laid-back holes with and without impingement on the turbine vane leading edge model are investigated in this paper. To obtain the film cooling effectiveness and heat transfer coefficient, transient temperature measurement technique on complete surface based on double thermochromic liquid crystals is used in this research. A semi-cylinder model is used to model the vane leading edge which is arranged with two rows of holes. Four test models are measured under four blowing ratios including cylindrical film holes with and without impingement tube structure, laid-back film holes with and without impingement tube structure. This is the second part of a two-part paper, the first part paper GT2018-76061 focuses on film cooling effectiveness and this study will focus on heat transfer. Contours of surface heat transfer coefficient and laterally averaged result are presented in this paper. The result shows that the heat transfer coefficient on the surface of the leading edge is enhanced with the increase of blowing ratio for same structure. The shape of the high heat transfer coefficient region gradually inclines to span-wise direction as the blowing ratio increases. Heat transfer coefficient in the region where the jet core flows through is relatively lower, while in the jet edge region the heat transfer coefficient is relatively higher. Compared with cylindrical hole, laid-back holes give higher heat transfer coefficient. Meanwhile, the introduction of impingement also makes heat transfer coefficient higher compared with cross flow air intake. It is found that the heat transfer of the combination of laid-back hole and impingement tube can be very high under large blowing ratio which should get attention in the design process.


2014 ◽  
Vol 521 ◽  
pp. 104-107
Author(s):  
Ling Zhang ◽  
Quan Heng Jin ◽  
Da Fei Guo

The Realizable k-ε turbulence model was performed to investigate the film cooling effectiveness with different blowing ratio 1,1.5,2 and different density ratio 1,1.5,2.The results show that, cooling effectiveness increases with the augment of blowing ratio. On the pressure side, cooling effectiveness increases with the augment of density ratio. On the suction side, with higher density ratio the leading edge cooling increases, the middle section reduces, and the trailing edge cooling effectiveness increases first decreases.


Author(s):  
Yingjie Zheng ◽  
Ibrahim Hassan

This paper presents experimental flow field investigations of a film cooling scheme, referred to as nozzle scheme, on a flat plate using stereo PIV. The nozzle scheme has a cylindrical hole and internal obstacles to change the velocity distribution near the hole exit and hence the jet-mainstream interaction. Counter-rotating vortex pair (CRVP) is known to be one of the detrimental effects that affect the film cooling effectiveness. Previous CFD simulations demonstrated nozzle hole’s capability of reducing CRVP strength and enhancing film cooling effectiveness in comparison with a normal cylindrical hole. The present study examines the nozzle hole flow filed experimentally at blowing ratio ranged from 0.5 to 2.0 and compares with cylindrical hole. The experiments were conducted in a low-speed wind tunnel with a mainstream Reynolds number of 115,000 and the density ratio was 1.0 during all the investigations. The experimental results show that nozzle hole reduces streamwise vorticity of CRVP by an average of 55% at low blowing ratio, and 34%–40% at high blowing ratios. The velocity field and vorticity field of nozzle jet are compared with cylindrical jet. The result reveals that the nozzle jet forms a round bulk in contrast to the kidney shape jet core in cylindrical hole case. In addition, it is found that CRVP strength may not be a primary contributor to the jet lift-off.


2001 ◽  
Vol 7 (3) ◽  
pp. 153-164 ◽  
Author(s):  
Ping-Hei Chen ◽  
Min-Sheng Hung ◽  
Pei-Pei Ding

In order to explore the effect of blowing ratio on film cooling over a convex surface, the present study adopts the transient liquid crystal thermography for the film cooling measurement on a straight circular hole configuration. The test piece has a strength of curvature(2r/D)of 92.5, pitch to diameter ratio(P/D)of 3 and streamwise injection angle(γ)of35∘All measurements were conducted under the mainstream Reynolds number(Red)of 1700 with turbulence intensity(Tu)of 3.8%, and the density ratio between coolant and mainstream(ρc/ρm)is 0.98. In current study, the effect of blowing ratio(M)on film cooling performance is investigated by varying the range of blowing ratio from 0.5 to 2.0. Two transient tests of different injection flow temperature were conducted to obtain both detailed heat transfer coefficient and film cooling effectiveness distributions of measured region. The present measured results show that both the spanwise averaged heat transfer coefficient and film cooling effectiveness increase with decreased blowing ratio.


Author(s):  
Chun-yi Yao ◽  
Hui-ren Zhu ◽  
Cun-liang Liu ◽  
Bo-lun Zhang ◽  
Xin-lei Li

Abstract A number of experimental studies have been performed to study the effect of geometric and aerodynamic parameters on the film cooling performance on the flat plate and turbine blade, however, the experimental investigations on a fully-cooled turbine vane is limited, especially at different density ratios. Consequently, an experiment on a fully-cooled turbine vane with multi-row film cooling holes was carried out to investigate the effect of mass flow ratio and density ratio on the film cooling performance, in which the film cooling effectiveness and heat transfer coefficient was measured by transient liquid crystal. The mainstream inlet Reynolds number based on the inlet velocity and the true chord length is 120000 and the mainstream turbulence intensity is 15%, three mass flow ratios of 5.5%, 8.4% and 11% and two density ratios of 1.0 and 1.5 were tested. The air was selected as the mainstream, the air and carbon dioxide were independently selected as secondary flow to produce two density ratios of 1.0 and 1.5. The test vane is similar in geometry to a first stage turbine vane of a normal aeroengine. Two cavities were manufactured in the test vane to feed 18 rows of film cooling holes. Results show that with the mass flow ratio increasing for DR = 1.0 and 1.5, the film cooling effectiveness on pressure side gradually increases, however, that on the suction side gradually decreases. Generally, increased density ratio produces higher film cooling effectiveness because the injection momentum was reduced, however, the film cooling effectiveness on the suction side for DR = 1.5 is lower than that for DR = 1.0. The coolant outflow significantly enhances the surface heat transfer coefficient for 0 < S/C < 0.5 and S/C < −0.5. The heat transfer coefficient in the leading edge is less affected by the density ratio, however, the increase in density ratio reduces the heat transfer coefficient ratio in other regions, especially for large mass flow ratios.


Sign in / Sign up

Export Citation Format

Share Document