Measurement of Hysteresis Energy Using Digital Image Correlation With Application to Energy Based Fatigue Life Prediction

Author(s):  
Dino Celli ◽  
M.-H. Herman Shen ◽  
Casey Holycross ◽  
Onome Scott-Emuakpor ◽  
Tommy George

A modified experimental method using digital image correlation (DIC), a non-contact optical method for measuring full-field displacements and strains, is used to interrogate accumulated fatigue damage for low and high cycle fatigue (LCF/HCF) at continuum scales. Previous energy based fatigue life prediction methods have shown that cyclic strain energy dissipated during fatigue acts as a key damage parameter for accurate determination of total and remaining fatigue life. DIC enables the collection of accurate strain energy measurements or damaging energy of complex geometries that would otherwise be exceedingly difficult and time consuming using traditional strain measurement techniques. Thus, the use of DIC to obtain strain energy measurements of gas turbine engine components is highly advantageous for energy-based fatigue life prediction methods. Presented in this study is the experimental characterization of the cyclic strain energy dissipation as a means of predicting fatigue performance and assessment of damage progression of Aluminum 6061 subjected to fully reversed axial fatigue loading utilizing DIC. Validation of total and cyclic strain energy dissipation DIC measurements are accomplished with the simultaneous use of axial extensometery for direct comparison and implementation to strain energy based life prediction methods.

2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Dino Celli ◽  
M.-H. Herman Shen ◽  
Casey Holycross ◽  
Onome Scott-Emuakpor ◽  
Tommy George

A modified experimental method using digital image correlation (DIC), a noncontact optical method for measuring full-field displacements and strains, is used to interrogate accumulated fatigue damage for low and high cycle fatigue at continuum scales. Previous energy-based fatigue life prediction methods have shown that cyclic strain energy dissipated during fatigue acts as a key damage parameter for accurate determination of total and remaining fatigue life. DIC enables the collection of accurate strain energy measurements or damaging energy of complex geometries that would otherwise be exceedingly difficult and time consuming using traditional strain measurement techniques. Thus, the use of DIC to obtain strain energy measurements of gas turbine engine (GTE) components is highly advantageous for energy-based fatigue life prediction methods. Presented in this study is the experimental characterization of the cyclic strain energy dissipation as a means of predicting fatigue performance and assessment of damage progression of Aluminum 6061 subjected to fully reversed axial fatigue loading utilizing DIC. Validation of total and cyclic strain energy dissipation DIC measurements is accomplished with the simultaneous use of axial extensometery for direct comparison and implementation to strain energy-based life prediction methods.


Author(s):  
Casey M. Holycross ◽  
John N. Wertz ◽  
Todd Letcher ◽  
M.-H. Herman Shen ◽  
Onome E. Scott-Emuakpor ◽  
...  

An energy-based method used to predict fatigue life and critical life of various materials has been previously developed, correlating strain energy dissipated during monotonic fracture to total cyclic strain energy dissipation in fatigue fracture. This method is based on the assumption that the monotonic strain energy and total hysteretic strain energy to fracture is equivalent. The fracture processes of monotonic and cyclic failure modes can be of stark contrast, with ductile and brittle fracture dominating each respectively. This study proposes that a more appropriate damage parameter for predicting fatigue life may be to use low cycle fatigue (LCF) strain energy rather than monotonic energy. Thus, the new damage parameter would capture similar fracture processes and cyclic behavior. Round tensile specimens machined from commercially supplied Al 6061-T6511 were tested to acquire LCF failure data in fully reversed loading at various alternating stresses. Results are compared to both monotonic and cyclic strain energy dissipation to determine if LCF strain energy dissipation is a more suitable damage parameter for fatigue life prediction.


2018 ◽  
Vol 2018 (0) ◽  
pp. J0320104
Author(s):  
Tatsuya KAMEYAMA ◽  
Takumi TOKIYOSHI ◽  
Chikako KATOU ◽  
Toshihide IGARI ◽  
Hiroyuki KOBAYASHI ◽  
...  

Author(s):  
Pradeep Lall ◽  
Sandeep Shantaram ◽  
Arjun Angral ◽  
Mandar Kulkarni ◽  
Jeff Suhling

Relative damage-index based on the leadfree interconnect transient strain history from digital image correlation, explicit finite-elements, cohesive-zone elements, and component’s survivability envelope has been developed for life-prediction of two-leadfree electronic alloy systems. Life prediction of pristine and thermally-aged assemblies, have been investigated. Solder alloy system studied include Sn1Ag0.5Cu, and 96.5Sn3.5Ag. Transient strains during the shock-impact have been measured using digital image correlation in conjunction with high-speed cameras operating at 50,000 fps. Both the board strains and the package strains have been measured in a variety of drop orientations including JEDEC horizontal drop orientation, vertical drop orientation and intermediate drop orientations. In addition the effect of sequential stresses of thermal aging and shock-impact on the failure mechanisms has also been studied. The thermal aging condition used for the study includes 125°C for 100 hrs. The presented methodology addresses the need for life prediction of new lead-free alloy-systems under shock and vibration, which is largely beyond the state of art. Three failure modes have been predicted including interfacial failure at the copper-solder interface, solder-PCB interface, and the solder joint failure. Explicit non-linear finite element models with cohesive-zone elements have been developed and correlated with experimental results. Velocity data from digital image correlation has been used to drive the attachment degrees of freedom of the submodel and extract transient interconnect strain histories. Explicit finite-element sub-modeling has been correlated with the full-field strain in various locations, orientations, on both the package and the board-side. The survivability of the leadfree interconnections under sequential loading (thermal aging and shock-impact) from simulation has been compared with pristine circuit assemblies subjected to shock-impact. Sequential loading changes the failure modes and decreases the drop reliability as compared to the room temperature experimental results. Damage index based survivability envelope is intended for component integration to ensure reliability in harsh environments.


2018 ◽  
Vol 10 (11) ◽  
pp. 168781401881101 ◽  
Author(s):  
Yaliang Liu ◽  
Yibo Sun ◽  
Yang Sun ◽  
Hongji Xu ◽  
Xinhua Yang

Spot welding of dissimilar materials can utilize the respective advantage comprehensively, of which reliable prediction of fatigue life is the key issue in the structure design and service process. Taking into account almost all the complex factors that have effects on the fatigue behavior such as load level, thickness, welding nugget diameter, vibrational frequency, and material properties, this article proposed an energy dissipation-based method that is able to predict the fatigue life for spot-welded dissimilar materials rapidly. In order to obtain the temperature gradient, the temperature variations of four-group spot-welded joint of SUS301 L-DLT stainless steel and Q235 carbon steel during high-cycle fatigue tests were monitored by thermal infrared scanner. Specifically, temperature variation disciplines of specimen surface were divided into four stages: temperature increase, temperature decrease, continuous steady increase in temperature, and ultimate drop after the fracture. The material constant C that a spot-welded joint of dissimilar material needs to reach fracture is 0.05425°C·mm3. When the specimen was applied higher than the fatigue limit, the highest error between experimental values and predicted values is 18.90%, and others are lower than 10%. Therefore, a good agreement was achieved in fatigue life prediction between the new method and the validation test results.


2018 ◽  
Vol 5 (10) ◽  
pp. 180951 ◽  
Author(s):  
Jingnan Zhang ◽  
Fengxian Xue ◽  
Yue Wang ◽  
Xin Zhang ◽  
Shanling Han

Aiming at the problem of the fatigue life prediction of rubber under the influence of temperature, the effects of thermal ageing and fatigue damage on the fatigue life of rubber under the influence of temperature are analysed and a fatigue life prediction model is established by selecting strain energy as a fatigue damage parameter based on the uniaxial tensile data of dumbbell rubber specimens at different temperatures. Firstly, the strain energy of rubber specimens at different temperatures is obtained by the Yeoh model, and the relationship between it and rubber fatigue life at different temperatures is fitted by the least-square method. Secondly, the function formula of temperature and model parameters is obtained by the least-square polynomial fitting. Finally, another group of rubber specimens is tested at different temperatures and the fatigue characteristics are predicted by using the proposed prediction model under the influence of temperature, and the results are compared with the measured results. The results show that the predicted value of the model is consistent with the measured value and the average relative error is less than 22.26%, which indicates that the model can predict the fatigue life of this kind of rubber specimen at different temperatures. What's more, the model proposed in this study has a high practical value in engineering practice of rubber fatigue life prediction at different temperatures.


Sign in / Sign up

Export Citation Format

Share Document