scholarly journals Strain energy-based rubber fatigue life prediction under the influence of temperature

2018 ◽  
Vol 5 (10) ◽  
pp. 180951 ◽  
Author(s):  
Jingnan Zhang ◽  
Fengxian Xue ◽  
Yue Wang ◽  
Xin Zhang ◽  
Shanling Han

Aiming at the problem of the fatigue life prediction of rubber under the influence of temperature, the effects of thermal ageing and fatigue damage on the fatigue life of rubber under the influence of temperature are analysed and a fatigue life prediction model is established by selecting strain energy as a fatigue damage parameter based on the uniaxial tensile data of dumbbell rubber specimens at different temperatures. Firstly, the strain energy of rubber specimens at different temperatures is obtained by the Yeoh model, and the relationship between it and rubber fatigue life at different temperatures is fitted by the least-square method. Secondly, the function formula of temperature and model parameters is obtained by the least-square polynomial fitting. Finally, another group of rubber specimens is tested at different temperatures and the fatigue characteristics are predicted by using the proposed prediction model under the influence of temperature, and the results are compared with the measured results. The results show that the predicted value of the model is consistent with the measured value and the average relative error is less than 22.26%, which indicates that the model can predict the fatigue life of this kind of rubber specimen at different temperatures. What's more, the model proposed in this study has a high practical value in engineering practice of rubber fatigue life prediction at different temperatures.

Author(s):  
T. E. Wong ◽  
C. Chu

A thermal fatigue life prediction model of a ceramic column grid array (CCGA) solder joint assembly has been developed when the 90Pb/10Sn solder columns of the CCGA package are soldered onto the printed circuit board with either tin-lead or lead-free solder paste. This model was evolved from an empirically derived formula by correlating the solder nonelastic strain energy density increment to the fatigue life test data. To develop the solder joint fatigue life prediction model, a nonlinear finite element analysis (FEA) was conducted using the ABAQUS computer code. A thermal fatigue life prediction model was then established. The test results, obtained from various sources in which tin-lead and lead-free solder pastes on PCB were used, combined with the FEA derived nonelastic strain energy density per temperature cycle, ΔW, were used to calibrate the proposed life prediction model. In the analysis, 3-D finite element global- and sub-modeling techniques were used to determine the ΔW of the CCGA solder joints when subjected to temperature cycling. The analysis results show that: 1) solder joint would typically fail across solder column instead of along solder pad interfaces; and 2) higher nonelastic strain energy densities of solder occur at the solder columns at the package corners and these solder joints would fail first. These analysis predictions are consistent with the test observations. In the model calibration process, the 625- and 1657-pin CCGA test results, which were cycled between 20°C/90°C, 0°C/100°C, -55°C/110°C, or -55°C/125°C, were reasonably well correlated to the predicted values of ΔW. Therefore, the developed life prediction model could be used and is recommended to serve as an effective tool to determine the integrity of the CCGA solder joints during temperature cycling. In addition, the following future work is recommended: 1) selecting more study cases with various solder joint configurations, package sizes, environmental profiles, etc. to further calibrate this life prediction model; 2) using this model to conduct parametric studies to identify critical factors impacting solder joint fatigue life and then seek an optimum design; and 3) developing a simplified method instead of the FEA approach to make preliminary thermal fatigue life estimates of the CCGA solder joints.


2013 ◽  
Vol 762 ◽  
pp. 680-685
Author(s):  
Chun Yuan Shi ◽  
Lan Zhan ◽  
Hong Xiao Wang ◽  
Chun Sheng Wang ◽  
Wei Yang

In this paper, fatigue damage and life prediction of laser lap joints were investigated based on natural frequency as the damage variable. At each fatigue stage, damage degree of laser welded specimen was monitored by the fatigue test and dynamic response tests. The results show that in the fatigue process during the increase in the number of fatigue cycles, each order natural frequency of test specimen decreased at different rate. There was almost no damage before the number of cycles reached 60% of the fatigue life, and then cracks began to initiate. When the number of cycles reaches 80% of the life, macroscopic cracks appeared and the predicted damage degree reached to 50%. Based on relation between the change rate of the natural frequency and the fatigue damage, a new fatigue life prediction model was established. The results from experimental tests were consistent with the fatigue life prediction model.


2012 ◽  
Vol 06 ◽  
pp. 251-256
Author(s):  
HO-YOUNG YANG ◽  
JAE-HOON KIM ◽  
KEUN-BONG YOO

Co -base superalloys have been applied in the stationary components of gas turbine owing to their excellent high temperature properties. Low cycle fatigue data on ECY-768 reported in a companion paper were used to evaluate fatigue life prediction models. In this study, low cycle fatigue tests are performed as the variables of total strain range and temperatures. The relations between plastic and total strain energy densities and number of cycles to failure are examined in order to predict the low cycle fatigue life of Cobalt-based super alloy at different temperatures. The fatigue lives is evaluated using predicted by Coffin-Manson method and strain energy methods is compared with the measured fatigue lives at different temperatures. The microstructure observing was performed for how affect able to low-cycle fatigue life by increasing the temperature.


2012 ◽  
Vol 577 ◽  
pp. 127-131 ◽  
Author(s):  
Peng Wang ◽  
Tie Yan ◽  
Xue Liang Bi ◽  
Shi Hui Sun

Fatigue damage in the rotating drill pipe in the horizontal well of mining engineering is usually resulted from cyclic bending stresses caused by the rotation of the pipe especially when it is passing through curved sections or horizontal sections. This paper studies fatigue life prediction method of rotating drill pipe which is considering initial crack in horizontal well of mining engineering. Forman fatigue life prediction model which considering stress ratio is used to predict drill string fatigue life and the corresponding software has been written. The program can be used to calculate the stress of down hole assembly, can predict stress and alternating load in the process of rotating-on bottom. Therefore, establishing buckling string fatigue life prediction model with cracks can be a good reference to both operation and monitor of the drill pipe for mining engineering.


Sign in / Sign up

Export Citation Format

Share Document