On Predictions of Fuel Effects on Lean Blow Off Limits in a Realistic Gas Turbine Combustor Using Finite Rate Chemistry

Author(s):  
Joshua Piehl ◽  
Luis Bravo ◽  
Waldo Acosta ◽  
Gaurav Kumar ◽  
Scott Drennan ◽  
...  

The demand for aviation propulsion systems with ever higher power requirements, reliability, and reduced emissions has been steadily increasing. Desirable features for next generation high-efficiency gas turbine engines include improvements in combustion efficiency, fuel economy, and stable operation in the fuel lean limit. Despite recent advances, a significant issue facing gas turbine designers is sustaining flame stability during lean operation, which could otherwise lead to global extinction events, or lean blow out (LBO), resulting in a severe loss of operability, particularly at higher altitudes. Flame stabilization is a complex physical and chemical process which is determined by the competing effects of the rates of chemical reactions and rate of turbulence advection-diffusion of species and energy to and from the flame leading to a local ignition and extinction phenomena. The goal of the present study is to perform a high fidelity numerical investigation of the turbulent diffusion flame in a realistic turbine combustor to evaluate the potential to predict the local lean-blow-off dynamics and to gain more insights of the complex physics. A comparative study on LBO characteristics is performed using Finite Rate Chemistry, Large Eddy Simulation and Adaptive Mesh Refinement, for different fuels using a realistic gas turbine combustor. The fuels investigated include a petroleum based fuel and an alternative fuel candidate. The simulation was broken down in two phases: flame stabilization and a subsequent staged ramp-down of fuel flow rate to initiate LBO. It is shown that the simulations successfully predict LBO occurring at different equivalence ratios for the two fuels. Although, the simulations predict LBO occurring at slightly smaller equivalence (fuel-to-air) ratio than the experimental data, the difference between the equivalence ratios of the two fuels at LBO is very close to the experimental observation.

Author(s):  
Sandeep Jella ◽  
Pierre Gauthier ◽  
Gilles Bourque ◽  
Jeffrey Bergthorson ◽  
Ghenadie Bulat ◽  
...  

Finite-rate chemical effects at gas turbine conditions lead to incomplete combustion and well-known emissions issues. Although a thin flame front is preserved on an average, the instantaneous flame location can vary in thickness and location due to heat losses or imperfect mixing. Postflame phenomena (slow CO oxidation or thermal NO production) can be expected to be significantly influenced by turbulent eddy structures. Since typical gas turbine combustor calculations require insight into flame stabilization as well as pollutant formation, combustion models are required to be sensitive to the instantaneous and local flow conditions. Unfortunately, few models that adequately describe turbulence–chemistry interactions are tractable in the industrial context. A widely used model capable of employing finite-rate chemistry is the eddy dissipation concept (EDC) model of Magnussen. Its application in large eddy simulations (LES) is problematic mainly due to a strong sensitivity to the model constants, which were based on an isotropic cascade analysis in the Reynolds-averaged Navier–Stokes (RANS) context. The objectives of this paper are: (i) to formulate the EDC cascade idea in the context of LES; and (ii) to validate the model using experimental data consisting of velocity (particle image velocimetry (PIV) measurements) and major species (1D Raman measurements), at four axial locations in the near-burner region of a Siemens SGT-100 industrial gas turbine combustor.


Author(s):  
Sandeep Jella ◽  
Pierre Gauthier ◽  
Gilles Bourque ◽  
Jeffrey Bergthorson ◽  
Ghenadie Bulat ◽  
...  

Finite-rate chemical effects at gas turbine conditions lead to incomplete combustion and well-known emissions issues. Although a thin flame front is preserved on an average, the instantaneous flame location can vary in thickness and location due to heat losses or imperfect mixing. Post-flame phenomena (slow CO oxidation or thermal NO production) can be expected to be significantly influenced by turbulent eddy structures. Since typical gas turbine combustor calculations require insight into flame stabilization as well as pollutant formation, combustion models are required to be sensitive to the instantaneous and local flow conditions. Unfortunately, few models that adequately describe turbulence-chemistry interactions are tractable in the industrial context. A widely used model capable of employing finite-rate chemistry, is the Eddy Dissipation Concept (EDC) model of Magnussen. Its application in large eddy simulations (LES) is problematic mainly due to a strong sensitivity to the model constants which were based on an isotropic cascade analysis in the RANS context. The objectives of this paper are: (i) To formulate the EDC cascade idea in the context of LES; and (ii) To validate the model using experimental data consisting of velocity (PIV measurements) and major species (1-D Raman measurements), at four axial locations in the near-burner region of a Siemens SGT-100 industrial gas turbine combustor.


1996 ◽  
Vol 118 (3) ◽  
pp. 201-208 ◽  
Author(s):  
S. M. Correa ◽  
I. Z. Hu ◽  
A. K. Tolpadi

Computer modeling of low-emissions gas-turbine combustors requires inclusion of finite-rate chemistry and its intractions with turbulence. The purpose of this review is to outline some recent developments in and applications of the physical models of combusting flows. The models reviewed included the sophisticated and computationally intensive velocity-composition pdf transport method, with applications shown for both a laboratory flame and for a practical gas-turbine combustor, as well as a new and computationally fast PSR-microstructure-based method, with applications shown for both premixed and nonpremixed flames. Calculations are compared with laserbased spectroscopic data where available. The review concentrates on natural-gas-fueled machines, and liquid-fueled machines operating at high power, such that spray vaporization effects can be neglected. Radiation and heat transfer is also outside the scope of this review.


Author(s):  
Veeraraghava R Hasti ◽  
Prithwish Kundu ◽  
Sibendu Som ◽  
Jay P Gore

The turbulent flow field in a practical gas turbine combustor is very complex because of the interactions between various flows resulting from components like multiple types of swirlers, dilution holes, and liner effusion cooling holes. Numerical simulations of flows in such complex combustor configurations are challenging. The challenges result from (a) the complexities of the interfaces between multiple three-dimensional shear layers, (b) the need for proper treatment of a large number of tiny effusion holes with multiple angles, and (c) the requirements for fast turnaround times in support of engineering design optimization. Both the Reynolds averaged Navier–Stokes simulation (RANS) and the large eddy simulation (LES) for the practical combustor geometry are considered. An autonomous meshing using the cut-cell Cartesian method and adaptive mesh refinement (AMR) is demonstrated for the first time to simulate the flow in a practical combustor geometry. The numerical studies include a set of computations of flows under a prescribed pressure drop across the passage of interest and another set of computations with all passages open with a specified total flow rate at the plenum inlet and the pressure at the exit. For both sets, the results of the RANS and the LES flow computations agree with each other and with the corresponding measurements. The results from the high-resolution LES simulations are utilized to gain fundamental insights into the complex turbulent flow field by examining the profiles of the velocity, the vorticity, and the turbulent kinetic energy. The dynamics of the turbulent structures are well captured in the results of the LES simulations.


Author(s):  
Masato Hiramatsu ◽  
Yoshifumi Nakashima ◽  
Sadamasa Adachi ◽  
Yudai Yamasaki ◽  
Shigehiko Kaneko

One approach to achieving 99% combustion efficiency (C.E.) and 10 ppmV or lower NOx (at 15%O2) in a micro gas turbine (MGT) combustor fueled by biomass gas at a variety of operating conditions is with the use of flameless combustion (FLC). This paper compares experimentally obtained results and CHEMKIN analysis conducted for the developed combustor. As a result, increase the number of stage of FLC combustion enlarges the MGT operation range with low-NOx emissions and high-C.E. The composition of fuel has a small effect on the characteristics of ignition in FLC. In addition, NOx in the engine exhaust is reduced by higher levels of CO2 in the fuel.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Andreas Schwärzle ◽  
Thomas O. Monz ◽  
Andreas Huber ◽  
Manfred Aigner

Jet-stabilized combustion is a promising technology for fuel flexible, reliable, highly efficient combustion systems. The aim of this work is a reduction of NOx emissions of a previously published two-stage micro gas turbine (MGT) combustor (Zanger et al., 2015, “Experimental Investigation of the Combustion Characteristics of a Double-Staged FLOX-Based Combustor on an Atmospheric and a Micro Gas Turbine Test Rig,” ASME Paper No. GT2015-42313 and Schwärzle et al., 2016, “Detailed Examination of Two-Stage Micro Gas Turbine Combustor,” ASME Paper No. GT2016-57730), where the pilot stage (PS) of the combustor was identified as the main contributor to NOx emissions. The geometry optimization was carried out regarding the shape of the pilot dome and the interface between PS and main stage (MS) in order to prevent the formation of high-temperature recirculation zones. Both stages have been run separately to allow a detailed understanding of the flame stabilization within the combustor, its range of stable combustion, the interaction between both stages, and the influence of the modified geometry. All experiments were conducted at atmospheric pressure and an air preheat temperature of 650  °C. The flame was analyzed in terms of shape, length, and lift-off height, using OH* chemiluminescence (OH-CL) images. Emission measurements for NOx, CO, and unburned hydrocarbons (UHC) emissions were carried out. At a global air number of λ = 2, a fuel split variation was carried out from 0 (only PS) to 1 (only MS). The modification of the geometry leads to a decrease in NOx and CO emissions throughout the fuel split variation in comparison with the previous design. Regarding CO emissions, the PS operations are beneficial for a fuel split above 0.8. The local maximum in NOx emissions observed for the previous combustor design at a fuel split of 0.78 was not apparent for the modified design. NOx emissions were increasing, when the local air number of the PS was below the global air number. In order to evaluate the influence of the modified design on the flow field and identify the origin of the emission reduction compared to the previous design, unsteady Reynolds-averaged Navier–Stokes simulations were carried out for both geometries at fuel splits of 0.93 and 0.78, respectively, using the DLR (German Aerospace Center) in-house code turbulent heat release extension of the tau code (theta) with the k–ω shear stress transport turbulence model and the DRM22 (Kazakov and Frenklach, 1995, “DRM22,” University of California at Berkeley, Berkeley, CA, accessed Sept. 21, 2017, http://www.me.berkeley.edu/drm/) detailed reaction mechanism. The numerical results showed a strong influence of the recirculation zones on the PS reaction zone.


1987 ◽  
Vol 109 (3) ◽  
pp. 313-318 ◽  
Author(s):  
M. Novack ◽  
G. Roffe ◽  
G. Miller

Thermal preconditioning is a process in which coal/water mixtures are vaporized to produce coal/steam suspensions, and then superheated to allow the coal to devolatilize producing suspensions of char particles in hydrocarbon gases and steam. This final product of the process can be injected without atomization, and burned directly in a gas turbine combustor. This paper reports on the results of an experimental program in which thermally preconditioned coal/water mixture was successfully burned with a stable flame in a gas turbine combustor test rig. Tests were performed at a mixture flowrate of 300 lb/hr and combustor pressure of 8 atm. The coal/water mixture was thermally preconditioned and injected into the combustor over a temperature range from 350°F to 600°F, and combustion air was supplied at between 600°F to 725°F. Test durations varied between 10 and 20 min. Major results of the combustion testing were that: A stable flame was maintained over a wide equivalence ratio range, between φ = 2.2 (rich) and 0.2 (lean); and combustion efficiency of over 99 percent was achieved when the mixture was preconditioned to 600°F and the combustion air preheated to 725°F. Measurements of ash particulates, captured in the exhaust sampling probe located 20 in. from the injector face, show typical sizes collected to be about 1 μm, with agglomerates of these particulates to be not more than 8 μm. The original mean coal particle size for these tests, prior to preconditioning, was 25 μm. Results of additional tests showed that one third of the sulfur contained in the solids of a coal/water mixture with 3 percent sulfur was evolved in gaseous form (under mild thermolized conditions) mainly as H2S with the remainder as light mercaptans.


Fluids ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 126 ◽  
Author(s):  
Kai Zhang ◽  
Ali Ghobadian ◽  
Jamshid M. Nouri

The scale-resolving simulation of a practical gas turbine combustor is performed using a partially premixed finite-rate chemistry combustion model. The combustion model assumes finite-rate chemistry by limiting the chemical reaction rate with flame speed. A comparison of the numerical results with the experimental temperature and species mole fraction clearly showed the superiority of the shear stress transport, K-omega, scale adaptive turbulence model (SSTKWSAS). The model outperforms large eddy simulation (LES) in the primary region of the combustor, probably for two reasons. First, the lower amount of mesh employed in the simulation for the industrial-size combustor does not fit the LES’s explicit mesh size dependency requirement, while it is sufficient for the SSTKWSAS simulation. Second, coupling the finite-rate chemistry method with the SSTKWSAS model provides a more reasonable rate of chemical reaction than that predicted by the fast chemistry method used in LES simulation. Other than comparing with the LES data available in the literature, the SSTKWSAS-predicted result is also compared comprehensively with that obtained from the model based on the unsteady Reynolds-averaged Navier–Stokes (URANS) simulation approach. The superiority of the SSTKWSAS model in resolving large eddies is highlighted. Overall, the present study emphasizes the effectiveness and efficiency of coupling a partially premixed combustion model with a scale-resolving simulation method in predicting a swirl-stabilized, multi-jets turbulent flame in a practical, complex gas turbine combustor configuration.


Author(s):  
N. Y. Sharma ◽  
S. K. Som

The practical challenges in research in the field of gas turbine combustion mainly centre around a clean emission, a low liner wall temperature and a desirable exit temperature distribution for turboma-chinery applications, along with fuel economy of the combustion process. An attempt has been made in the present paper to develop a computational model based on stochastic separated flow analysis of typical diffusion-controlled spray combustion of liquid fuel in a gas turbine combustor to study the influence of fuel volatility at different combustor pressures and inlet swirls on combustion and emission characteristics. A κ-ɛ model with wall function treatment for the near-wall region has been adopted for the solution of conservation equations in gas phase. The initial spray parameters are specified by a suitable probability distribution function (PDF) size distribution and a given spray cone angle. A radiation model for the gas phase, based on the first-order moment method, has been adopted in consideration of the gas phase as a grey absorbing-emitting medium. The formation of thermal NO x as a post-combustion reaction process is determined from the Zeldovich mechanism. It has been recognized from the present work that an increase in fuel volatility increases combustion efficiency only at higher pressures. For a given fuel, an increase in combustor pressure, at a constant inlet temperature, always reduces the combustion efficiency, while the influence of inlet swirl is found to decrease the combustion efficiency only at higher pressure. The influence of inlet pressure on pattern factor is contrasting in nature for fuels with lower and higher volatilities. For a higher-volatility fuel, a reduction in inlet pressure decreases the value of the pattern factor, while the trend is exactly the opposite in the case of fuels with lower volatilities. The NOx emission level increases with decrease in fuel volatility at all combustor pressures and inlet swirls. For a given fuel, the NOx emission level decreases with a reduction in combustor pressure and an increase in inlet swirl number.


Sign in / Sign up

Export Citation Format

Share Document