A Thermoelastohydrodynamic Analysis for the Static Performance of High-Speed Heavy Load Tilting-Pad Journal Bearing Operating in the Turbulent Flow Regime and Comparisons to Test Data

Author(s):  
Hirotoshi Arihara ◽  
Yuki Kameyama ◽  
Yoshitaka Baba ◽  
Luis San Andrés

Tilting-pad journal bearings (TPJBs) ensure rotordynamic stability that could otherwise produce dangerously large amplitude rotor oil-whirl/whip motions in high speed rotating machinery. Currently, highly efficient turbo compressors demand an ever increasing rotor surface speed and specific load on its support bearings. The accurate prediction of bearing performance is vital to guarantee reliable products, specifically with regard to reducing maximum bearing pad temperature and drag power losses, and operating with the least flow rate while still maximizing load capacity. The hydrodynamic pressure and heat generation in an oil film acting on a bearing pad produce significant mechanical and thermal deformations that change the oil film geometry (clearance and preload) to largely affect the bearing performance, static and dynamic. In addition, a high surface speed bearing often operates in the turbulent flow regime that produces a notable increase in power loss and a drop in maximum pad temperature. This paper details a thermoelastohydrodynamic (TEHD) analysis model applied to TPJBs, presents predictions for their steady-load performance, and discusses comparisons with experimental results to validate the model. The test bearing has four pads with a load between pads configuration; its length L = 76.2 mm and shaft diameter D = 101.6 mm (L/D = 0.75). The rotor top speed is 22.6 krpm, i.e. 120 m/s surface speed, and the maximum specific load is 2.94 MPa for an applied load of 23 kN. The test procedure records shaft speed and applied load, oil supply pressure/temperature and flow rate, and also measures the pads’ temperature and shaft temperature, as well as the discharge oil (sump) temperature. The TEHD model couples a generalized Reynolds equation for the hydrodynamic pressure generation with a three-dimensional energy transport equation for the film temperature. The pad mechanical deformation due to pressure utilizes the finite elemental method, whereas an analytical model estimates thermally induced pad crowning deformations. For operation beyond the laminar flow regime, the analysis incorporates the eddy viscosity concept for fully developed turbulent flow operation. Current predictions demonstrate the influence of pressure and temperature fields on the pads mechanical and thermally induced deformation fields, and also show static performance characteristics such as bearing power loss, flow rate, and pad temperatures. The comparisons of test results and analysis results reveal that turbulent flow effects significantly reduce the pads’ maximum temperature while increasing the bearing power loss. Turbulent flow mixing increases the diffusion of thermal energy and makes more uniform the temperature profile across the film.

Author(s):  
Hirotoshi Arihara ◽  
Yuki Kameyama ◽  
Yoshitaka Baba ◽  
Luis San Andrés

Tilting-pad journal bearings (TPJBs) ensure rotordynamic stability that could otherwise produce dangerously large amplitude rotor oil-whirl/whip motions in high-speed rotating machinery. Currently, highly efficient turbo compressors demand an ever increasing rotor surface speed and specific load on its support bearings. The accurate prediction of bearing performance is vital to guarantee reliable products, specifically with regard to reducing maximum bearing pad temperature and drag power losses, and operating with the least flow rate while still maximizing load capacity. The hydrodynamic pressure and heat generation in an oil film acting on a bearing pad produce significant mechanical and thermal deformations that change the oil film geometry (clearance and preload) to largely affect the bearing performance, static, and dynamic. In addition, a high surface speed bearing often operates in the turbulent flow regime that produces a notable increase in power loss and a drop in maximum pad temperature. This paper details a thermoelastohydrodynamic (TEHD) analysis model applied to TPJBs, presents predictions for their steady-load performance, and discusses comparisons with experimental results to validate the model. The test bearing has four pads with a load between pads configuration; its length L = 76.2 mm and shaft diameter D = 101.6 mm (L/D = 0.75). The rotor top speed is 22.6 krpm, i.e., 120 m/s surface speed, and the maximum specific load is 2.94 MPa for an applied load of 23 kN. The test procedure records shaft speed and applied load, oil supply pressure/temperature and flow rate, and also measures the pads' temperature and shaft temperature, as well as the discharge oil (sump) temperature. The TEHD model couples a generalized Reynolds equation for the hydrodynamic pressure generation with a three-dimensional energy transport equation for the film temperature. The pad mechanical deformation due to pressure utilizes the finite elemental method, whereas an analytical model estimates thermally induced pad crowning deformations. For operation beyond the laminar flow regime, the analysis incorporates the eddy viscosity concept for fully developed turbulent flow operation. Current predictions demonstrate the influence of pressure and temperature fields on the pads mechanical and thermally induced deformation fields and also show static performance characteristics such as bearing power loss, flow rate, and pad temperatures. The comparisons of test results and analysis results reveal that turbulent flow effects significantly reduce the pads' maximum temperature while increasing the bearing power loss. Turbulent flow mixing increases the diffusion of thermal energy and makes more uniform the temperature profile across the film.


2013 ◽  
Vol 34 (4) ◽  
pp. 427-434 ◽  
Author(s):  
Ivan Fořt ◽  
Pavel Seichter ◽  
Luboš Pešl ◽  
František Rieger ◽  
Tomáš Jirout

Abstract This paper presents a comparison of the blending efficiency of eight high-speed rotary impellers in a fully baffled cylindrical vessel under the turbulent flow regime of agitated charge. Results of carried out experiments (blending time and impeller power input) confirm that the down pumping axial flow impellers exhibit better blending efficiency than the high-speed rotary impellers with prevailing radial discharge flow. It follows from presented results that, especially for large scale industrial realisations, the axial flow impellers with profiled blades bring maximum energy savings in comparison with the standard impellers with inclined flat blades (pitched blade impellers).


1976 ◽  
Vol 98 (1) ◽  
pp. 73-79 ◽  
Author(s):  
J. W. Capitao ◽  
R. S. Gregory ◽  
R. P. Whitford

A comparison of the high-speed performance characteristics of tilting-pad, self-equalizing type thrust bearings through two independent full-scale programs is reported. This paper presents experimental data on centrally pivoted, 6-pad, 267-mm (10 1/2-in.) and 304-mm (12-in.) O.D. bearings operating at shaft speeds up to 14000 rpm and bearing loads ranging up to 2.76 MPa (400 psi). Data presented demonstrate the effects of speed and loading on bearing power loss and metal temperatures. Included is a discussion of optimum oil supply flow rate based upon considerations of bearing pad temperatures and power loss values.


1996 ◽  
Vol 118 (1) ◽  
pp. 225-231 ◽  
Author(s):  
L. Bouard ◽  
M. Fillon ◽  
J. Freˆne

A thermohydrodynamic analysis of tilting-pad bearing in turbulent flow regime is presented. Two tilting-pad journal bearings are studied. A local analysis of thermal turbulent phenomena is shown. The theoretical prediction of the maximum temperature decreases when the flow regime becomes nonlaminar and the decrease corresponding to higher power losses is explained using the velocity component profiles and the local heat flux in the film.


Sign in / Sign up

Export Citation Format

Share Document