Aerodynamic Numerical Investigation of Low-Pressure Steam Turbine Last Stage Under Low Load Conditions With Mode Decomposition Methods

Author(s):  
Ping Hu ◽  
Tong Lin ◽  
Rui Yang ◽  
Xiaocheng Zhu ◽  
Zhaohui Du

Abstract It is common that steam turbine works at different operating points, especially under low load conditions, to cater to complex and varied demands for power generation recently. Considering the long and thin shape of last stage moving blades (LSMBs) in a low-pressure (LP) steam turbine, there are many challenges to design a suitable case which balances global efficiency against sufficient structure strength when suffering excitations at low load operating points. In present work, the aim is to extract specific aerodynamic excitations and recognize their distribution and propagation features. Firstly, steady 3D computational fluid dynamics (CFD) calculations are simulated at 25GV and 17GV (25% and 17% of design mass flow conditions) and corresponding unsteady calculations are performed with enough rotor revolutions to obtain integrated flow periodicities. Unsteady pressure signals near tip region of LSMBs are monitored circumferentially in both static and rotating coordinates. The fast Fourier transformation (FFT) results of unsteady pressure signals show that there are broadband humps with small disturbance amplitudes in low frequency spectrum at 25GV, however, a sharp spike is shown in low frequency spectrum at 17GV. Further, circumferential mode decomposition (CMD) method has been applied to distinguish different fluctuations in frequency and the mode numbers and circumferential propagating pace of which have been obtained. Finally, dynamic mode decomposition (DMD) method has been performed to describe detailed mode shapes of featured flow perturbances both in static and rotating coordinate system. These analyses indicate that at 25GV, a band of unsteady responses with very low amplitude was noted which has some features similar to rotating instability (RI). However, distribution and propagation features of flow unsteadiness at 17GV are in good agreement with rotating stall (RS) in compressor.

Author(s):  
Naoki Shibukawa ◽  
Yoshifumi Iwasaki ◽  
Mitsunori Watanabe

Experimental investigations with a six stage real scale low pressure steam turbine operated at a very low load conditions are presented in this paper. Although the tested 35 inch last stage blades are circumferentially coupled at both tip and mid span with an intention to reduce the vibration stress, still its increase was observed at extremely low load condition. The pressure fluctuations were measured by several silicon diaphragm sensors which were mounted on both inner and outer casings of the stator inlet, exit and blade exit position. The measurement of the vibration stress was performed by strain gauges on several blades. The power spectra of unsteady pressures were precisely investigated considering both their location and steam flow condition. And the results implied that huge reverse flow and re-circulation started in the same location as a blade-to-blade CFD predicted. In terms of the correlation between vibration stress and the flow feature, the pressure fluctuation around the blade tip produces dominant effects on the vibration stress. The unsteady pressure frequency were also investigated and compared with those of the blade resonance and rotational speed. Basic trends observed in the results are similar to what other researchers reported, and on top of that, the continuous trends of pressure fluctuation and blade vibration stress were systematically investigated. Even the wall pressure, not the pressure on blade surface, showed the effective fluctuations which excited the several nodes of natural frequencies of the last stage blade. A series of FFT of fluid force by a full annulus quasi-steady CFD simulation seems to predict dominant mode of the excitation which account for the behavior of vibration stresses. The mechanism of the rapid stress increase was examined by considering CFD results and measured unsteady pressure data together. As the test facility takes a responsibility as an independent power producer, the tests were conducted in real plant operations which include multi stage effects, inlet distortions, Reynolds Number effect and so on. The obtained data and the particular indicator of vibration stress increase can be used as a part of design tool validation with neither aerodynamic nor mechanical corrections.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shuangshuang Fan ◽  
Ying Wang ◽  
Kun Yao ◽  
Yi Fan ◽  
Jie Wan ◽  
...  

In the operating process of the coal-fired generation during flexible peaking regulation, the primary and secondary water droplets in the steam flowing through the last two stages of the low-pressure cylinder could influence the efficiency and safety of the steam turbine definitely. However, systematic analysis of the movement characteristics of water droplets under low-load conditions is scarcely in the existing research, especially the ultra-low load conditions below 30%. Toward this end, the more novel algebraic slip model and particle transport model mentioned in this paper are used to simulate the primary and secondary water droplets. Taking a 600 MW unit as a research object, the droplets motion characteristics of the last two stages were simulated within four load conditions, including 100, 50, 40, and 30% THA. The results show that the diameter of the primary water droplets is smaller, ranging from 0 to 1 µm, during the flexible peak regulation process of the steam turbine. The deposition is mainly located at the entire moving blades and the trailing edge of the last two stator blades. With the load decreasing, the deposition effect decreases sustainably. And the larger diameters of secondary water droplets range from 10 to 300 µm. The erosion of secondary water droplets in the last stage is more serious than that of the second last stage for different load conditions, and the erosion of the second last stage could be negligible. The pressure face and suction face at 30% blade height of the last stage blade have been eroded most seriously. The lower the load, the worse erosion from the secondary water droplets, which poses a potential threat to the fracture of the last stage blades of the steam turbine. This study provides a certain reference value for the optimal design of steam turbine blades under flexible peak regulation.


Author(s):  
Kiyoshi Segawa ◽  
Shigeki Senoo ◽  
Hisashi Hamatake ◽  
Takeshi Kudo ◽  
Tateki Nakamura ◽  
...  

Four-stage low pressure model steam turbine tests are carried out under the low load conditions of 0% to 20% load. In such low load conditions, the reverse flow is generated from turbine exit. Steady pressure measurements using multi-hole pneumatic probes are made to specify the outer boundary of the reverse flow region. The reverse flow regions are determined from the flow angles measured by the multi-hole pneumatic probes, traversing in the radial direction which rotates 360 deg around the longitudinal axis. The outer boundary of the reverse flow regions varies depending on turbine loads and has good agreement with the results of the numerical analyses. The pressure fluctuations are measured using unsteady pressure transducers installed on both the inner and outer side walls of the outlet stage and on the next-stage stationary blade surfaces to investigate the relation between pressure fluctuation and volumetric flow. It is found that the pressure fluctuations, which are defined by the standard deviation of unsteady pressure, become larger with decreased volumetric flow at the outer side as well as the inner side which is the same as the tendency seen for blade dynamic stress characteristics. The authors have previously reported good agreement between the experimental and numerical results. The unsteady pressure probe as another measurement technique is employed to investigate the spanwise pressure fluctuations at the outlet of the moving blade. The results show that as the load decreases, large pressure fluctuations are observed in the vicinity of the outer side after the stages where the reverse flow is observed. This is the same tendency as the results of wall pressure measurements. The generation of large pressure fluctuations, detected by the two different measurement techniques, might have a relationship with the effects of not only the vortex motion in the reverse flow region but also the overall flow field (including main forward flow) oscillated by the multiple vortex motions in the reverse flow region as seen in both experiments and computations. The large pressure fluctuations in the vicinity of the outer side after the blade lead to the increase of exciting force and vibration stress on moving blades. Detailed aerodynamic investigations of these part-load conditions are needed to analyze a blade excitation for further improvement of reliability and availability of steam turbines. The complicated flow structures at low load conditions in a steam turbine can be understood with the aid of both the steady and unsteady flow measurements and calculations.


Author(s):  
Bin Zhou ◽  
Amir Mujezinovic ◽  
Andrew Coleman ◽  
Wei Ning ◽  
Asif Ansari

Low Engine Order (LEO) excitations on a steam turbine Last Stage low-pressure (LP) Bucket (or Blade) (LSB) are largely the result of flow unsteadiness (e.g. flow circulation and reversal) due to low steam exit velocity (Vax) off the LSB at the off-design conditions. These excitations at low frequencies impose major constraints on LP bucket aeromechanical design. In this study, bucket forced response under typical LEO excitation was analytically predicted and correlated to experimental measurements. First, transient CFD analyses were performed at typical low flow, low Vax operating conditions that had been previously tested in a subscale low pressure turbine test rig. The unsteady pressure distribution on the bucket was derived from the transient CFD analyses at frequencies corresponding to the bucket’s modes of vibration. Subsequently, these computed unsteady pressure were mapped onto a LSB finite element model, and forced response analyses were performed to estimate the bucket dynamic response, i.e. the alternating stresses and strains. The analytically predicted bucket response was compared against measured data from airfoil mounted strain gages and good correlation was found between the analytical prediction and the test data. Despite uncertainty associated with various parameters such as damping and unsteady steam forcing etc., the developed methodology provides a viable approach for predicting bucket forced response and in turn High Cycle Fatigue (HCF) capability during early phases of steam turbine LSB design.


Author(s):  
Lorenzo Pinelli ◽  
Federico Vanti ◽  
Lorenzo Peruzzi ◽  
Andrea Arnone ◽  
Andrea Bessone ◽  
...  

Abstract This paper is part of a two-part publication that aims to experimentally and numerically evaluate the aerodynamic and mechanical damping of a last stage ST blade at low load operation. A three-stage downscaled steam turbine with a snubbered last stage moving blade LSMB has been tested in the T10MW test facility of Doosan Skoda Power R&D Department in the context of the FLEXTURBINE European project (Flexible Fossil Power Plants for the Future Energy Market through new and advanced Turbine Technologies). Aerodynamic and flutter simulations of different low load conditions have been performed. The acquired data are used to validate the unsteady CFD approach for the prediction of the aerodynamic damping in terms of logarithmic decrement. Numerical results have been achieved through an upgraded version of the URANS CFD solver, selecting appropriate and robust numerical setups for the simulation of very low load conditions, such as increased condenser pressure at the exhaust hood outlet. The numerical methods for blade aerodamping estimation are based on the computation of the unsteady pressure response caused by the row vibration. They are usually classified in time-linearized, harmonic balance and non-linear approaches both in frequency and time domain. The validation of all these methods historically started in the field of aeronautical low-pressure turbines and has been gradually extended to compressor blades and steam turbine rows. For the analysis of a steam turbine last rotor blade operating at strong part load conditions, non-linear methods are recommended as these approaches are able to deal with strong nonlinear phenomena such as shock waves and massive flow separations inside the domain. Experimental data have been used to separate the contributions of mechanical and aerodynamic damping, extrapolating to zero mass flow the total measured damping. Finally, the comparisons between the aerodynamic damping coming from measurements and CFD results have been reported in order to highlight the capability to properly predict the last stage blade flutter stability at low load conditions. Such comparisons confirms the flutter free design of the new snubbered LSMB blade.


Author(s):  
Shigeki Senoo ◽  
Kiyoshi Segawa ◽  
Hisashi Hamatake ◽  
Takeshi Kudo ◽  
Tateki Nakamura ◽  
...  

A computational technique for multistage steam turbines, which can allow for thermodynamic properties of steam, is presented. Conventional three-dimensional multistage calculations for unsteady flows have two main problems. One is the long computation time and the other is how to include the thermodynamic properties of steam. Ideal gas is assumed in most computational techniques for compressible flows. To shorten the computational time, a quasi-three-dimensional flow calculation technique is developed. In the analysis, conservation laws for compressible fluid in axisymmetric cylindrical coordinates are solved using a finite volume method based on an approximate Riemann solver. Blade forces are calculated from the camber and lean angles of blades with momentum equations. The axisymmetric assumption and the blade force model enable the effective calculation for multistage flows, even when the flow is strongly unsteady under off-design conditions. To take into account steam properties including effects of the gas-liquid phase change and two-phase flow, a flux-splitting procedure of compressible flow is generalized for real fluid. Density and internal energy per unit volume are selected as independent thermodynamic variables. Pressure and temperature in a superheated region or wetness mass fraction in a wet region are calculated by using a steam table. To improve computational efficiency, a discretized steam table matrix is made in which the density and specific internal energy are independent variables. For accuracy and continuity of steam properties, the second order Taylor expansion and linear interpolation are introduced. The computed results of the last four-stage low-pressure steam turbine at low load conditions show that there is a reverse flow near the hub region of the last stage bucket and the flow concentrates in the tip region due to the centrifugal force. At a very low load condition, the reverse flow region extends to the former stages and the unsteadiness of flow gets larger due to many vortices. Four-stage low-pressure steam turbine tests are also carried out at low load. The radial distributions of flow direction downstream from each stage are measured by traversing pneumatic probes. Additionally, pressure transducers are installed in the side wall to measure unsteady pressure. The regions of reverse flow are compared between computations and experiments at different load conditions, and their agreement is good. Further, the computation can follow the trends of standard deviation of unsteady pressure on the wall to volumetric flow rate of experiments.


Author(s):  
Ping Hu ◽  
Tong Lin ◽  
Rui Yang ◽  
Xiaocheng Zhu ◽  
Zhaohui Du

The modern power generation system requires steam turbines operating at flexible operating points, and flow instabilities readily occur in the low-pressure (LP) last stage under low-load conditions, which may cause failure of the last stage moving blades. Some studies have shown that within this operating range, a shift of the operating point may lead to flow instabilities. Numerical simulation has gradually developed into a popular method for such researches, but it is expensive for a complex model, which has to be balanced between efficiency and accuracy. This work is divided into three parts: Firstly, one of the low-load conditions is selected to provide both URANS model and the Scale-Adaptive Simulation (SAS) model. The results of the two models are compared to evaluate specific flow phenomena; Secondly, through calculations of different low-load conditions, the flow structure and propagation characteristics of instabilities in the last stage are obtained; Finally, flow analysis is applied to explain the formation mechanism of flow instabilities in LP steam turbines. The results show that, the introduction of SAS model increases the randomness of flow over time, but does not fundamentally change the flow instabilities. Flow instabilities take different forms at different flow rate, from rotating instability to rotating stall. The formation of flow instabilities is related to the radial flow in the cascade passages.


Author(s):  
Di Qi ◽  
Yifeng Chen ◽  
Gang Lin ◽  
Wenfu Li ◽  
Wei Tan

Abstract Operating at low load conditions may cause strong and non-synchronous unsteadiness and a high blade dynamic loading for the last stage blades (LSB). Full annulus models should be used to investigate the circumferential asymmetric flow unsteadiness and blade vibrations. Currently, although full annulus models have been applied to numerical aerodynamic studies, to authors’ knowledge, there is still no research including the full annulus in structural analysis due to the high computational cost. In this paper, an unsteady aerodynamic and structural coupled analysis method for an industrial steam turbine LSB using full annulus model under low load conditions is presented. To conduct finite element method (FEM) with limited computational resources, a new structural analysis procedure is proposed to calculate the dynamic stress. The aerodynamic analysis is conducted in both steady and unsteady computational fluid dynamics (CFD) calculations. The tip pressure ratio in the steady state calculations is used to predict the aerodynamic loading intensity. The unsteady results indicate typical flow characteristics under low load conditions, which show a big separation region behind the last rotor and tip vortex between last stator and rotor. Unsteady aerodynamic loading is mapped onto the blade surface as the excitation force. The structural analysis is performed to investigate the characteristics of blade vibrations and stress distributions of the full annulus LSB. Repeating the method, a reasonable characteristics curve of vibration stress against flow rates for LSB is calculated.


Author(s):  
Naoki Shibukawa ◽  
Yoshihiro Ishikawa ◽  
Yoshifumi Iwasaki ◽  
Kota Chiba

A shutdown operation of a large size steam turbine could possibly cause flashing phenomena of the pooled drain water in low-pressure heaters. The boiled steam is sometimes in the same amount as the main flow in the case where shutdown is executed during low load conditions, and returns to the steam flow path through the extraction lines. A series of experimental works with a subscale model turbine facility has been carried out to investigate the vibration stress behavior, and the steady and unsteady pressures under the flashing back conditions. It was observed that the blades of the two stages before the last stage (L-2) and a stage before the last stage (L-1) endured their peak vibration stresses immediately after the flash-back flow reached the turbine. In the meantime, the vibration stresses of the last stage (L-0) blades were reduced. In this paper, the behavior of the water droplets and their vaporization in the steam path were mainly investigated. A series of experiment was conducted in which several amounts of controlled sprayed water were continuously supplied into the turbine. The transient steam condition and blade’s vibration stresses were measured at the same time. The results showed the possibility that sprayed water upstream can change the mass flow rate and temperature downstream to avoid the unstable steam flow and overheating of the long blades during low load operation.


Sign in / Sign up

Export Citation Format

Share Document