High Resolution Measurements of Heat Transfer, Near-Wall Intermittency, and Reynolds-Stresses Along a Flat Plate Boundary Layer Undergoing Bypass Transition

Author(s):  
Holger Albiez ◽  
Christoph Gramespacher ◽  
Matthias Stripf ◽  
Hans-Jörg Bauer

Abstract A new experimental dataset focusing on the influence of high free-stream turbulence and large pressure gradients on boundary layer transition is presented. The experiments are conducted in a new wind tunnel equipped with a flat plate test section and a new kind of turbulence generator which allows for a continuous variation of turbulence intensity. The flat plate features an elliptic nose and is mounted midway between contoured top and bottom walls. Two different wall contours can be implemented to create pressure distributions on the flat plate that are typical for the pressure and suction side of high pressure turbine cascades. A large variation of Reynolds number from 3.0 · 105 to 7.5 · 105 and inlet turbulence intensity between 1.1 % and 8 % is realized, resulting in more than 100 test cases. Measurements comprise highly resolved heat transfer, near-wall intermittency and free-stream Reynolds stress distributions. Near-wall intermittency is measured using a traversable hotfilm sensor embedded in a steel-belt that is running around the flat plate while free-stream Reynolds stresses are measured simultaneously at the same position with a revolvable X-wire probe. Additionally, turbulent length scales are analyzed using the X-wire signal along the flat plate. Results show that heat transfer and near wall intermittency distributions are in good agreement and that heat transfer at high turbulence levels increases prior to the formation of first turbulence spots. Transition onset is found to be influenced by the turbulence Reynolds number, i.e. turbulent length scales. At constant inlet turbulence intensity, transition onset moves upstream, when the turbulent Reynolds number is decreased.

2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Holger Albiez ◽  
Christoph Gramespacher ◽  
Matthias Stripf ◽  
Hans-Jörg Bauer

Abstract A new experimental dataset focusing on the influence of high freestream turbulence and large pressure gradients on boundary layer transition is presented. The experiments are conducted in a new wind tunnel equipped with a flat plate test section and a new kind of turbulence generator, which allows for a continuous variation of turbulence intensity. The flat plate is mounted midway between contoured top and bottom walls. Two different wall contours can be implemented to create pressure distributions on the flat plate that are typical for the pressure and suction side of high pressure turbine cascades. A large variation of Reynolds number from 3.0 × 105 to 7.5 × 105 and inlet turbulence intensity between 1.1% and 8% is realized, resulting in more than 100 test cases. Measurements comprise highly resolved heat transfer, near-wall intermittency and freestream Reynolds stress distributions. Near-wall intermittency is measured using a traversable hotfilm sensor while freestream Reynolds stresses are measured simultaneously at the same position with a revolvable X-wire probe. Additionally, turbulent length scales are analyzed using the X-wire signal along the flat plate. Results show that heat transfer and near-wall intermittency distributions are in good agreement and that heat transfer at high turbulence levels increases prior to the formation of first turbulence spots. Transition onset is found to be influenced by the turbulence Reynolds number, i.e., turbulent length scales. At constant inlet turbulence intensity, transition onset moves upstream, when the turbulent Reynolds number is decreased.


Author(s):  
Christoph Gramespacher ◽  
Matthias Stripf ◽  
Hans-Jörg Bauer

Abstract Heat transfer measurements in transitional flat plate boundary layers subjected to surface roughness, strong pressure gradients and free stream turbulence are presented. The surfaces considered, consist of a smooth reference and twenty six deterministic surface topographies that vary in roughness element aspect ratio, height and density. They are designed to cover the full range of roughness regimes from smooth over transitionally rough to fully rough. For each surface, two pressure distributions, characteristic for a suction and a pressure side turbine vane, are investigated. Inlet Reynolds numbers range from 3.0 · 105 to 6.0 · 105 and inlet turbulence intensity is varied between 1% to 8%. Furthermore, different turbulence Reynolds numbers, i.e. turbulence length scales, are realized while the incident turbulence intensity is kept constant. Additionally, the turbulence intensity and Reynolds stress distributions in the free-stream along the flat plate are measured using x-wire probes. Results show a strong influence of roughness and turbulence intensity on the onset of transition. The new data set is used to develop an improved correlation considering the roughness height, density and shape as well as the turbulence intensity and turbulent length scales.


Author(s):  
E. J. Walsh ◽  
F. Brighenti ◽  
D. M. McEligot

The evolution of the laminar boundary layer over a flat plate under a free stream turbulence intensity of 1.3% is analysed. The effect of free stream turbulence on the onset of transition is one of the important sources leading to bypass transition. Such disturbances are of great interest in engineering for the prediction of transition on turbine blades. The study concentrates on the early part of the boundary layer, starting from the leading edge, and is characterised by the presence of streamwise elongated regions of high and low streamwise velocity. It is demonstrated that the so called “Klebanoff modes” are not entirely representative of the flow structures, due to the time-averaged representations used in most studies. For the conditions of this investigation it is found that the urms and the peak disturbances remain constant in the early stages of the transition development. This region, in which the streaks strength is constant, is problematic for many theories as it is not known where on a surface to initiate a growth theory calculation, and hence the prediction of transition onset is difficult. The observation that a constant urms region exists within the boundary layer under these conditions may be the source of great difficulty in predicting transition onset under turbulence levels around 1%. This region suggests that the streaks are either continuously generated and damped, or do not grow during the early stage of transition, and highlights the importance of continuous influence of the free stream turbulence along the boundary layer edge. This work concludes that the first is more likely, and furthermore the measurements are shown to agree with recent direct numerical simulations.


Author(s):  
Richard W. Kaszeta ◽  
Terrence W. Simon ◽  
David E. Ashpis

This paper presents experimental results from a study of the effects of periodically passing wakes upon laminar-to-turbulent transition and separation in a low-pressure turbine passage. The test section geometry is designed to simulate unsteady wakes in turbine engines for studying their effects on boundary layers and separated flow regions over the suction surface by using a single suction surface and a single pressure surface to simulate a single turbine blade passage. Single-wire, thermal anemometry techniques are used to measure time-resolved and phase-averaged, wall-normal profiles of velocity, turbulence intensity and intermittency at multiple streamwise locations over the turbine airfoil suction surface. These data are compared to steady-state wake-free data collected in the same geometry to identify the effects of wakes upon laminar-to-turbulent transition. Results are presented for flows with a Reynolds number based on suction surface length and stage exit velocity of 50,000 and an approach flow turbulence intensity of 2.5%. While both existing design and experimental data are primarily concerned with higher Reynolds number flows (Re > 100,000), recent advances in gas turbine engines, and the accompanying increase in laminar and transitional flow effects, have made low-Re research increasingly important. From the presented data, the effects of passing wakes on transition and separation in the boundary layer, due to both increased turbulence levels and varying streamwise pressure gradients are presented. The results show how the wakes affect transition. The wakes affect the flow by virtue of their difference in turbulence levels and scales from those of the free-stream and by virtue of their ensemble-averaged velocity deficits, relative to the free-stream velocity, and the concomitant changes in angle of attack and temporal pressure gradients. The relationships between the velocity oscillations in the freestream and the unsteady velocity profile shapes in the near-wall flow are described. In this discussion is support for the theory that bypass transition is a response of the near-wall viscous layer to pressure fluctuations imposed upon it from the free-stream flow. Recent transition models are based on that premise. The data also show a significant lag between when the wake is present over the surface and when transition begins.


1967 ◽  
Vol 89 (2) ◽  
pp. 169-175 ◽  
Author(s):  
G. H. Junkhan ◽  
G. K. Serovy

Experimental data indicating some effects of free-stream turbulence intensity on time-average boundary-layer velocity profiles and on heat transfer from a constant-temperature flat plate with a favorable pressure gradient are presented for local Reynolds numbers ranging from 4 × 104 to 4 × 105 and for free-stream turbulence intensities from 0.4 to 8.3 percent. It is concluded that, for the range of variables covered by the experiments: (a) The effect of free-stream turbulence intensity on heat transfer through the laminar boundary layer with a zero pressure gradient is negligible; (b) for a given Reynolds number, the local Nusselt number increases with increasing free-stream turbulence intensity when a pressure gradient is present, the boundary-layer profiles for these conditions changing with a variation in free-stream turbulence intensity; and (c) no increase in Nusselt number with increase in free-stream turbulence intensity occurs for turbulent boundary layers with a favorable pressure gradient.


2021 ◽  
pp. 1-13
Author(s):  
Christoph Gramespacher ◽  
Matthias Stripf ◽  
Hans-Jörg Bauer

Abstract Heat transfer measurements in transitional flat plate boundary layers subjected to surface roughness, strong pressure gradients and free stream turbulence are presented. The surfaces considered, consist of a smooth reference and twenty six deterministic surface topographies that vary in roughness element aspect ratio, height and density. They are designed to cover the full range of roughness regimes from smooth over transitionally rough to fully rough. For each surface, two pressure distributions, characteristic for a suction and a pressure side turbine vane, are investigated. Inlet Reynolds numbers range from 300000 to 600000 and inlet turbulence intensity is varied between 1 % to 8 %. Furthermore, different turbulence Reynolds numbers, i.e. turbulence length scales, are realized while the incident turbulence intensity is kept constant. Additionally, the turbulence intensity and Reynolds stress distributions in the free-stream along the flat plate are measured using x-wire probes. Results show a strong influence of roughness and turbulence intensity on the onset of transition. The new data set is used to develop an improved correlation considering the roughness height, density and shape as well as the turbulence intensity and turbulent length scales.


1997 ◽  
Vol 119 (4) ◽  
pp. 794-801 ◽  
Author(s):  
J. Luo ◽  
B. Lakshminarayana

The boundary layer development and convective heat transfer on transonic turbine nozzle vanes are investigated using a compressible Navier–Stokes code with three low-Reynolds-number k–ε models. The mean-flow and turbulence transport equations are integrated by a four-stage Runge–Kutta scheme. Numerical predictions are compared with the experimental data acquired at Allison Engine Company. An assessment of the performance of various turbulence models is carried out. The two modes of transition, bypass transition and separation-induced transition, are studied comparatively. Effects of blade surface pressure gradients, free-stream turbulence level, and Reynolds number on the blade boundary layer development, particularly transition onset, are examined. Predictions from a parabolic boundary layer code are included for comparison with those from the elliptic Navier–Stokes code. The present study indicates that the turbine external heat transfer, under real engine conditions, can be predicted well by the Navier–Stokes procedure with the low-Reynolds-number k–ε models employed.


Author(s):  
R. E. Mayle ◽  
K. Dullenkopf

A theory for transition from laminar to turbulent flow as the result of unsteady, periodic passing of turbulent wakes in the free stream is developed using Emmons’ transition model. Comparisons made to flat plate boundary layer measurements and airfoil heat transfer measurements confirm the theory.


Sign in / Sign up

Export Citation Format

Share Document