Influence of Ribs on Internal Heat Transfer and Pressure Drop in a Turbine Blade Trailing Edge Channel

Author(s):  
Suhyun Kim ◽  
Seungwon Suh ◽  
Seungchan Baek ◽  
Wontae Hwang

Abstract Convective cooling inside the internal passage of a turbine blade trailing edge is often insufficient at the sharp corner, when cutback slot cooling is not present. This study investigates the convective heat transfer and pressure drop in a simplified trailing edge internal channel. The internal passage has been modeled as a right triangular channel with a 9° angle sharp corner. Heated baseline (with no internal features) and ribbed copper plates have been examined via infrared thermography. A uniform heat flux heater is installed beneath the plates, and non-uniformities in the heat flux due to conduction is corrected by a RANS conjugate heat transfer calculation. The numerical simulations were validated beforehand by experimental results of mean velocity, friction factor, and temperature fields. Nusselt number distributions show that convective heat transfer is significantly enhanced with ribs, and closely coupled with the vortical flow structure. Heat transfer at the corner is increased by more than a factor of two with ribs, due to secondary flow towards the corner. Although the pressure loss and friction increase slightly, the overall thermal performance, represented by the average Nusselt number with respect to the friction factor, increases by a factor of two with the ribs.

Author(s):  
Suhyun Kim ◽  
Seungwon Suh ◽  
Seungchan Baek ◽  
Wontae Hwang

Abstract Convective cooling in a gas turbine blade internal trailing edge channel is often insufficient at the sharp trailing edge. This study examines convective heat transfer and pressure drop within a simplified trailing edge channel. The internal passage has been modeled as a right triangular channel with a 9° angle sharp corner. Smooth baseline and ribbed copper plates were heated from underneath via a uniform heat flux heater and examined via infrared thermography. Non-uniformity in the heat flux due to conduction is corrected by a RANS conjugate heat transfer calculation, which was validated by the mean velocity, friction factor, and temperature fields from experiments and LES simulations. Nusselt number distributions illustrate that surface heat transfer is increased considerably with ribs, and coupled with the vortices in the flow. Heat transfer at the sharp corner is increased by more than twofold due to ribs placed at the center of the channel, due to secondary flow. The present partially ribbed channel utilizes secondary flow toward the corner, and is presumed to have better thermal performance than a fully ribbed channel. Thus, it is important to set the appropriate rib length within the channel.


Author(s):  
Guillermo E. Valencia ◽  
Miguel A. Ramos ◽  
Antono J. Bula

The paper describes an experimental procedure performed to obtain the convective heat transfer coefficient of Al2O3 nanofluid working as cooling fluid under turbulent regimen through arrays of aluminum microchannel heat sink having a diameter of 1.2 mm. Experimental Nusselt number correlation as a function of the volume fractions, Reynolds, Peclet and Prandtl numbers for a constant heat flux boundary condition is presented. The correlation for Nusselt number has a good agreement with experimental data and can be used to predict heat transfer coefficient for this specific nanofluid, water/Al2O3. Furthermore, the pressure drop is also analyzed considering the different nanoparticles concentration.


Author(s):  
Minking K. Chyu ◽  
Unal Uysal ◽  
Pei-Wen Lee

The present study explores the internal heat transfer in a triple-cavity cooling structure with a ribbed lip for a turbine blade trailing edge. The design consists of two impingement cavities, two sets of crossover holes, a third cavity and an exit slot with eleven ribs attached to it. Local heat transfer in each subregion is determined. Results indicate that the highest heat transfer occurs in the second impingement cavity. The exit slot area between the ribs is identified as a region of low heat transfer in the overall design. A comparison with enhancement induced by arrays of pin fins and fins of other geometries reveals that the triple-cavity design represents a lesser quality cooling scheme in the range of Reynolds numbers tested. Further improvement of the convective heat transfer at the exit slot with either film cooling, or different rib geometries appears to be essential to make the triple-cavity strategy superior to those of the traditional approaches for cooling of blade trailing edge.


Author(s):  
Jennifer van Rij ◽  
Tim Ameel ◽  
Todd Harman

The effects of rarefaction on convective heat transfer and pressure drop characteristics are numerically evaluated for uniform wall heat flux rectangular microchannels. Results are obtained by numerically solving the momentum and energy equations with both first- and second-order slip velocity and temperature jump boundary conditions. The resulting velocity and temperature fields are then evaluated to obtain the microchannel Poiseuille and Nusselt numbers. In addition to the effects of rarefaction, the effects of aspect ratio, thermal creep flow, and viscous dissipation are investigated for locally fully developed Poiseuille and Nusselt numbers. The constant wall heat flux results obtained in this study are compared to constant wall temperature results obtained previously, using the same numerical algorithm, at various aspect ratios including the limiting case of parallel plate microchannels. In addition to supplying previously unreported data on slip flow convective heat transfer and pressure drop characteristics, these results verify the numerical algorithm for more complex future slip flow analyses.


2010 ◽  
Vol 132 (7) ◽  
Author(s):  
Hamid Reza Seyf ◽  
Mohammad Layeghi

A numerical analysis of forced convective heat transfer from an elliptical pin fin heat sink with and without metal foam inserts is conducted using three-dimensional conjugate heat transfer model. The pin fin heat sink model consists of six elliptical pin rows with 3 mm major diameter, 2 mm minor diameter, and 20 mm height. The Darcy–Brinkman–Forchheimer and classical Navier–Stokes equations, together with corresponding energy equations are used in the numerical analysis of flow field and heat transfer in the heat sink with and without metal foam inserts, respectively. A finite volume code with point implicit Gauss–Seidel solver in conjunction with algebraic multigrid method is used to solve the governing equations. The code is validated by comparing the numerical results with available experimental results for a pin fin heat sink without porous metal foam insert. Different metallic foams with various porosities and permeabilities are used in the numerical analysis. The effects of air flow Reynolds number and metal foam porosity and permeability on the overall Nusselt number, pressure drop, and the efficiency of heat sink are investigated. The results indicate that structural properties of metal foam insert can significantly influence on both flow and heat transfer in a pin fin heat sink. The Nusselt number is shown to increase more than 400% in some cases with a decrease in porosity and an increase in Reynolds number. However, the pressure drop increases with decreasing permeability and increasing Reynolds number.


2015 ◽  
Vol 75 (11) ◽  
Author(s):  
Nor Azwadi Che Sidik ◽  
M.M. Yassin ◽  
M.N. Musa

A numerical simulation was accomplished in this study that investigated the turbulent force convective heat transfer and pressure drop in straight circular copper pipe with a hydraulic diameter of 0.0005m and 0.1m in length, as given by Lee and Mudawar [11]. The enhancement of heat transfer for water and nanofluids (Fe3O4) under 100 [W/m2] constant heat flux was applied around the wall of the pipe. In this study, standard k-ɛ turbulence model was employed and was performed at a steady state flow, incompressible turbulent flow, and three-dimensional structure. Various volume concentrations of nanoparticles were conducted in the range of 1% to 15% at constant nanoparticle diameter size, which was 32 nm. The heat transfer enhancement was obtained in the range of Reynolds number from 3000 to 10,000. The results displayed an increase in Reynolds number and volume concentrations, as well as an increase in the Nusselt number. The optimum Nusselt number gained was about 5% to 6% of volume concentration at each Reynolds number tested. Besides, with the increase of Reynolds number, the variation pressure saw a dropped for inlet, whereas an increase in the outlet section. Moreover, the  increase in volume concentration also caused a small increment in the pressure drop compared to pure water.


2002 ◽  
Vol 124 (3) ◽  
pp. 421-432 ◽  
Author(s):  
S. K. Saha ◽  
P. Langille

Heat transfer and pressure drop characteristics in a circular tube fitted with full-length strip, short-length strip, and regularly spaced strip elements connected by thin circular rods have been investigated experimentally. The strips have been rectangular, square and crossed in cross-section with different aspect ratio. Laminar flow of water and other viscous liquids was considered. The rod diameter and length of the strip-rod assembly and the length of the strips were varied. Isothermal friction factor data has been generated. The heat transfer test section was heated electrically imposing axially and circumferentially constant wall heat flux (UWHF) boundary condition. Reynolds number, Prandtl number, strip length, strip ratio, space ratio, and rod-diameter govern the characteristics. Smaller rod-diameter in the strip-rod assembly or “pinching” of the strips in place rather than connecting the strip elements by rods performs better thermohydraulically. Short-length strips (upto a limited fraction of the test section tube length) perform better than the full-length strip. The friction factor correlation and the correlation for Nusselt number under UWHF condition for full-length strip have been modified to make them suitable for short-length strip as well as regularly-spaced strip elements. Thermal entrance length in the correlations is represented by Graetz number. Friction factor and Nusselt number correlations for short-length strips as well as regularly-spaced strip elements, in the limit, reduce to their full-length counterparts.


Author(s):  
Naser Zarezadeh ◽  
Majid Saffar-Avval

The term of nanofluid refers to a solid-liquid mixture with a continuous phase which is a nanometer sized nanoparticle dispersed in conventional base fluids. Recent investigations on nanofluids indicate that the suspended nanoparticles markedly change the transport properties and heat transfer characteristics of the suspension. There are less published articles on deriving the forced convective heat transfer of nanofluids than articles on the effective thermal conductivity of nanofluids. Fully developed turbulent flow and heat transfer of two different nanofluids (Al2O3 and TiO2) in water flowing through a circular tube under constant heat flux condition have been experimentally studied. The results showed enhancement of convective heat transfer using the nanofluids. The Nusselt numbers of nanofluids were obtained for different nanoparticle concentrations as well as various Reynolds numbers. Experimental results emphasize the enhancement of heat transfer due to the nanoparticles presence in the fluid. Nusselt number increases by increasing the concentration of nanoparticles in nanofluid. And values of Nusselt number were calculated and these results have been introduced by experimental correlations for turbulent flow.


Sign in / Sign up

Export Citation Format

Share Document