scholarly journals Comparative Study of Blades Reduced Order Models With Geometrical Nonlinearities and Contact Interfaces

Author(s):  
Elise Delhez ◽  
Florence Nyssen ◽  
Jean-Claude Golinval ◽  
Alain Batailly

Abstract This paper investigates the use of different model reduction methods accounting for geometric nonlinearities. These methods are adapted to retain physical degrees-of-freedom in the reduced space in order to ease contact treatment. These reduction methods are applied to a 3D finite element model of an industrial compressor blade (NASA rotor 37). In order to compare the different reduction methods, a scalar indicator is defined. This performance indicator allows to quantify the accuracy of the predicted displacement both locally (at the blade tip) and globally. The robustness of each method with respect to variations of the external excitation is also assessed. The performances of the reduction methods are then compared in the case of frictional contact between the blade tip and the surrounding casing. This work brings evidence that reduced order models provide a computationally efficient alternative to full order finite element models for the accurate prediction of the time response of structures with both distributed and localized nonlinearities.

Author(s):  
Elias Khalifeh ◽  
Elsa Piollet ◽  
Antoine Millecamps ◽  
Alain Batailly

The modeling of centrifugal stiffening effects on bladed components is of primary importance in order to accurately capture their dynamics depending on the rotor angular speed. Centrifugal effects impact both the stiffness of the component and its geometry. In the context of the small perturbation framework, when considering a linear finite element model of the component, an assumption typically made in the scientific literature involves a fourth-order polynomial development of the stiffness matrix in terms of the angular speed. This polynomial development may fail to provide an accurate representation of the geometry evolution of a blade. Indeed, the error on the blade-tip displacement associated to the use of a linear finite element model quickly reaches the same order of magnitude as the blade-tip/casing clearance itself thus yielding a 100 % error on the blade-tip/casing clearance configuration. This article focuses on the presentation of a methodology that allows for creating accurate reduced order models of a 3D finite element model accounting for centrifugal stiffening with a very precise description of the blade-tip/casing clearance configuration throughout a given angular speed range. The quality of the obtained reduced order model is underlined before its numerical behaviour in the context of non-linear dynamic simulations be investigated. It is evidenced that the new reduced order model features specific interactions that could not be predicted with a linear model. In addition, results highlight the limitations of numerical predictions made for high angular speeds with a linear model. Finally, a particular attention is paid to the numerical sensitivity of the proposed model. As a downside of its increased accuracy, it is underlined that its computation must be done carefully in order to avoid numerical instabilities.


2015 ◽  
Vol 137 (7) ◽  
Author(s):  
Joseph A. Beck ◽  
Jeffrey M. Brown ◽  
Alex A. Kaszynski ◽  
Charles J. Cross ◽  
Joseph C. Slater

New geometric mistuning modeling approaches for integrally bladed rotors (IBRs) are developed for incorporating geometric perturbations to a fundamental disk–blade sector, particularly the disk–blade boundary or connection. Reduced-order models (ROMs) are developed from a Craig–Bampton component mode synthesis (C–B CMS) framework that is further reduced by a truncated set of interface modes that are obtained from an Eigen-analysis of the C–B CMS constraint degrees of freedom (DOFs). An investigation into using a set of tuned interface modes and tuned constraint modes for model reduction is then performed, which offers significant computational savings for subsequent analyses. Two configurations of disk–blade connection mistuning are investigated: as-measured principal component (PC) deviations and random perturbations to the interblade spacing. Furthermore, the perturbation sizes are amplified to investigate the significance of incorporating mistuned disk–blade connections during solid model generation from optically scanned geometries. Free and forced response results are obtained for each ROM and each disk–blade connection type and compared to full finite element model (FEM) solutions. It is shown that the developed methods provide accurate results with a reduction in solution time compared to the full FEM. In addition, results indicate that the inclusion of a mistuned disk–blade connection deviations are small or conditions where large perturbations are localized to a small areas of the disk–blade connection.


1989 ◽  
Vol 111 (1) ◽  
pp. 17-26 ◽  
Author(s):  
P. Schwibinger ◽  
R. Nordmann

Turbogenerator sets in operation may be excited to transient torsional vibrations by dynamic electrical moments at the generator due to short-circuits or faulty synchronization. For the solution of the torsional vibration problem it is essential to find an appropriate torsional model of the original system. A common approach is to model the torsional system finely by the finite element method which normally results in a very accurate mechanical model with many degrees of freedom (DOF). However for some applications it is desirable to have a torsional model with a reduced number of DOF which reproduces the original system exactly only in the lower eigenfrequencies and modes. This paper describes a method which allows finding a most accurate reduced torsional model with discrete masses and springs from a finite element model with many DOF. The results for the eigenfrequencies, the modes, and internal moments due to a short-circuit excitation of a 600 MW turbogenerator set are presented. They are compared with other reduction methods.


2011 ◽  
Vol 133 (5) ◽  
Author(s):  
Olguta Marinescu ◽  
Bogdan I. Epureanu ◽  
Mihaela Banu

Predicting the influence of cracks on the dynamics of bladed disks is a very important challenge. Cracks change the structural response, which in turn changes the crack propagation characteristics. Hence, accurate and computationally effective means to model the dynamics of cracked bladed disks and blisks is particularly crucial in applications such as prognosis, guidance for repairs, characterization after repairs, design, and structural health monitoring. Most current models of bladed disks exploit cyclic symmetry to gain computational efficiency. However, the presence of cracks and mistuning destroys that symmetry and makes computational predictions much more expensive. In this work, we propose a new reduced order modeling methodology that can speed up computations by several orders of magnitude. There are two key components of the new methodology. First, the displacements and deformations of the crack surfaces are not modeled in absolute coordinates but relative coordinates, which allows for an effective model reduction based on (fixed-interface Craig–Bampton) component mode synthesis (CMS). The use of relative coordinates allows one to define one of the components in CMS as the pristine/uncracked structure (with mistuning). This approach is used in combination with a set of accurate approximations for the constraint modes used in CMS. Second, the effects of mistuning are captured by component mode mistuning, which allows the construction of extremely efficient reduced order models for the pristine/uncracked component with mistuning. The novel proposed method is applied to a finite element model of an industrial blisk. The combined presence of mistuning and cracks is shown to have important effects. Also, the proposed approach is shown to provide accurate predictions for the overall blisk while requiring computations using single-sector models only. The influence of various parameters on the accuracy of the reduced order models is investigated. Overall, the results show a very good agreement between full finite element analyses and the proposed reduced order modeling approach.


1999 ◽  
Vol 121 (3) ◽  
pp. 515-522 ◽  
Author(s):  
R. Bladh ◽  
M. P. Castanier ◽  
C. Pierre

This paper presents important improvements and extensions to a computationally efficient reduced order modeling technique for the vibration analysis of mistuned bladed disks. In particular, this work shows how the existing modeling technique is readily extended to turbomachinery rotors with shrouded blades. The modeling technique employs a component mode synthesis approach to systematically generate a reduced order model (ROM) using component modes calculated from a finite element model (FEM) of the rotor. Based on the total number of degrees of freedom, the ROM is typically two or three orders of magnitude smaller than the FEM. This makes it feasible to predict the forced response statistics of mistuned bladed disks using Monte Carlo simulations. In this work, particular attention is devoted to the introduction of mistuning into the ROM of a shrouded assembly. Mistuning is modeled by projecting the mistuned natural frequencies of a single, cantilever blade with free shrouds onto the harmonic modes of the shrouded blade assembly. Thus, the necessary mistuning information may be measured by testing individual blades.


Author(s):  
Olguta Marinescu ◽  
Bogdan I. Epureanu ◽  
Mihaela Banu

Predicting the influence of cracks on the dynamics of bladed disks is a very important challenge. Cracks change the structural response, which in turn changes the crack propagation characteristics. Hence, accurate and computationally effective means to model the dynamics of cracked bladed disks and blisks is particularly crucial in applications such as prognosis, guidance for repairs, characterization after repairs, design, and structural health monitoring. Most current models of bladed disks exploit cyclic symmetry to gain computational efficiency. However, the presence of cracks and mistuning destroys that symmetry and makes computational predictions much more expensive. In this work, we propose a new reduced order modeling methodology which can speed up computations by several orders of magnitude. There are two key components of the new methodology. First, the displacements and deformations of the crack surfaces are not modeled in absolute coordinates but relative coordinates. That allows for an effective model reduction based on (fixed-interface Craig-Bampton) component mode synthesis (CMS). The use of relative coordinates allows one to define one of the components in CMS as the pristine/uncracked structure (with mistuning). This approach is used in combination with a set of accurate approximations for the constraint modes used in CMS. Second, the effects of mistuning are captured by component mode mistuning (CMM) which allows the construction of extremely efficient reduced order models for the pristine/uncracked component with mistuning. The novel proposed method is applied to a finite element model of an industrial blisk. The combined presence of mistuning and cracks is shown to have important effects. Also, the proposed approach is shown to provide accurate predictions for the overall blisk while requiring computations using single-sector models only. The influence of various parameters on the accuracy of the reduced order models is investigated. Overall, the results show a very good agreement between full finite element analyses and the proposed reduced order modeling approach.


Author(s):  
Joseph A. Beck ◽  
Jeffrey M. Brown ◽  
Charles J. Cross ◽  
Joseph C. Slater

New geometric mistuning approaches for integrally bladed rotors (IBRs) are developed for incorporating geometric perturbations to a fundamental disk-blade sector, particularly the disk-blade boundary, or connection. The developed Reduced Oder Models (ROMs) are formulated from a Craig-Bampton component mode synthesis (C-B CMS) framework that is further reduced by a truncated set of interface modes that are obtained from an eigen-analysis of the C-B CMS constraint degrees of freedom (DOFs). An investigation into using a set of tuned interface modes and tuned constraint modes for model reduction is then performed. A tuned mode approximation has the added benefit of being only calculated once which offers significant computational savings for subsequent analyses. Two configurations of disk-blade connection mistuning are investigated: as-measured principal component deviations and random perturbations to the inter-blade spacing. Furthermore, the perturbation sizes are amplified to investigate the significance of incorporating mistuned disk-blade connection. Free and forced response results are obtained for each ROM and each disk-blade connection type and compared to full finite element model (FEM) solutions. It is shown that the developed methods provide highly accurate results with a significant reduction in solution time compared to the full FEM. In addition, results indicate that the inclusion of a mistuned disk-blade connection becomes significant as the size of the geometric deviations at the connection become large.


Author(s):  
Shahid Saghir ◽  
M.I. Younis

This article presents and compares different approaches to develop reduced-order models for the nonlinear von-Karman rectangular microplates actuated by nonlinear electrostatic forces. The reduced-order models aim to investigate the static and dynamic behavior of the plate under small and large actuation forces. A fully clamped microplate is considered. Different types of basis functions are used in conjunction with the Galerkin method to discretize the governing equations. First, we investigate the convergence with the number of modes retained in the model. Then for validation purpose, a comparison of the static results is made with the results calculated by a nonlinear finite element model. The linear eigenvalue problem for the plate under the electrostatic force is solved for a wide range of voltages up to pull-in. Results among the various reduced-order modes are compared and are also validated by comparing to results of the finite-element model. Further, the reduced-order models are employed to capture the forced dynamic response of the microplate under small and large vibration amplitudes. Comparison of the different approaches is made for this case.


Author(s):  
Ronnie Bladh ◽  
Matthew P. Castanier ◽  
Christophe Pierre

This paper presents important improvements and extensions to a computationally efficient reduced order modeling technique for the vibration analysis of mistuned bladed disks. In particular, this work shows how the existing modeling technique is readily extended to turbomachinery rotors with shrouded blades. The modeling technique employs a component mode synthesis approach to systematically generate a Reduced Order Model (ROM) using component modes calculated from a Finite Element Model (FEM) of the rotor. Based on the total number of degrees of freedom, the ROM is typically two or three orders of magnitude smaller than the FEM. This makes it feasible to predict the forced response statistics of mistuned bladed disks using Monte Carlo simulations. In this work, particular attention is devoted to the introduction of mistuning into the ROM of a shrouded assembly. Mistuning is modeled by projecting the mistuned natural frequencies of a single, cantilever blade with free shrouds onto the harmonic modes of the shrouded blade assembly. Thus, the necessary mistuning information may be measured by testing individual blades.


Sign in / Sign up

Export Citation Format

Share Document