Effects of Axial Casing Grooves on the Structure of Turbulence in the Tip Region of an Axial Turbomachine Rotor

Author(s):  
Huang Chen ◽  
Yuanchao Li ◽  
Subhra Shankha Koley ◽  
Joseph Katz

Abstract Challenges in predicting the turbulence in the tip region of turbomachines include anisotropy, inhomogeneity, and non-equilibrium conditions, resulting in poor correlations between the Reynold stresses and the corresponding mean strain rate components. The geometric complexity introduced by casing grooves exacerbates this problem. Taking advantage of a large database collected in the refractive index-matched liquid facility at JHU, this paper examines the evolution of turbulence in the tip region of an axial turbomachine with and without axial casing grooves, and for two flow rates. The semi-circular axial grooves are skewed by 45° in the positive circumferential direction, similar to that described in Müller et al. [1]. Comparison to results obtained for an untreated endwall includes differences in the distributions of turbulent kinetic energy (TKE), Reynolds stresses, anisotropy tensor, and dominant terms in the TKE production rate. The evolution of TKE at high flow rates for blade sections located downstream of the grooves is also investigated. Common features include: with or without casing grooves, the TKE is high near the tip leakage vortex (TLV) center, and in the shear layer connecting it to the blade suction side tip corner. The turbulence is highly anisotropic and inhomogeneous, with the anisotropy tensor demonstrating shifts from one dimensional (1D) to 2D and to 3D structures over small distances. Furthermore, the correlation between the mean strain rate and Reynolds stress tensor components is poor. With the grooves, the flow structure, hence the distribution of Reynolds stresses, becomes much more complex. Turbulence is also high in the corner vortex that develops at the entrance to the grooves and in the flow jetting out of the grooves into the passage. Consistent with trends of production rates of normal Reynolds stress components, the grooves increase the axial and reduce the radial velocity fluctuations compared to the untreated endwall. These findings introduce new insight that might assist the future development of Reynolds stress models suitable for tip flows.

2021 ◽  
pp. 1-46
Author(s):  
Huang Chen ◽  
Yuanchao Li ◽  
Subhra Shankha Koley ◽  
Joseph Katz

Abstract Challenges in turbulence modeling in the tip region of turbomachines include anisotropy, inhomogeneity, and non-equilibrium conditions, resulting in poor correlations between Reynolds stresses and the corresponding mean strain rate components. The geometric complexity introduced by casing grooves exacerbates this problem. Taking advantage of a large database collected in the refractive index-matched liquid facility at JHU, this paper examines the effect of axial casing grooves on the distributions of turbulent kinetic energy (TKE), Reynolds stresses, anisotropy tensor, and TKE production rate in the tip region of an axial turbomachine. Comparisons are performed at flow rates corresponding to prestall and best efficiency points of the untreated machine. Common features include high TKE near the tip leakage vortex center, and in shear layer connecting it to the blade suction side tip corner. The turbulence is highly anisotropic and inhomogeneous, with the anisotropy tensor shifting from one dimensional (1D) to 2D and to 3D structures over small distances. With the grooves, the flow structure, hence the distribution of Reynolds stresses, becomes more complex. Additional sites with elevated turbulence include the corner vortex that develops at the entrance to the grooves, and in the flow jetting out of the grooves into the passage. Consistent with trends of the production rates of normal Reynolds stress components, the grooves increase the axial but reduce the radial velocity fluctuations as the inflow and outflow from the groove interacts with the passage flow. These findings might assist the development of Reynolds stress models suitable for tip flows.


1999 ◽  
Vol 122 (1) ◽  
pp. 48-50 ◽  
Author(s):  
J. Jovanovic´ ◽  
I. Otic´

The constitutive relation for the Reynolds stress tensor is considered for turbulence developing in axisymmetric strain fields. It is confirmed that the Reynolds stress tensor is aligned linearly with the mean strain rate. In contrast to the Prandtl-Kolmogorov, hypothesis, the effective viscosity is found to grow in proportion to the anisotropy of turbulence and the length scale based on the magnitude of the mean strain rate. Using invariant theory the effective viscosity is determined for the limiting states of turbulence. Additional analysis of the constitutive relations is supplemented for the dissipation and pressure-strain correlations. It is shown that analytical derivations are in excellent agreement with the data obtained from direct numerical simulations. [S0098-2202(00)02801-7]


2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Yuanchao Li ◽  
Huang Chen ◽  
Joseph Katz

Modeling of turbulent flows in axial turbomachines is challenging due to the high spatial and temporal variability in the distribution of the strain rate components, especially in the tip region of rotor blades. High-resolution stereo-particle image velocimetry (SPIV) measurements performed in a refractive index-matched facility in a series of closely spaced planes provide a comprehensive database for determining all the terms in the Reynolds stress and strain rate tensors. Results are also used for calculating the turbulent kinetic energy (TKE) production rate and transport terms by mean flow and turbulence. They elucidate some but not all of the observed phenomena, such as the high anisotropy, high turbulence levels in the vicinity of the tip leakage vortex (TLV) center, and in the shear layer connecting it to the blade suction side (SS) tip corner. The applicability of popular Reynolds stress models based on eddy viscosity is also evaluated by calculating it from the ratio between stress and strain rate components. Results vary substantially, depending on which components are involved, ranging from very large positive to negative values. In some areas, e.g., in the tip gap and around the TLV, the local stresses and strain rates do not appear to be correlated at all. In terms of effect on the mean flow, for most of the tip region, the mean advection terms are much higher than the Reynolds stress spatial gradients, i.e., the flow dynamics is dominated by pressure-driven transport. However, they are of similar magnitude in the shear layer, where modeling would be particularly challenging.


1996 ◽  
Vol 118 (4) ◽  
pp. 622-629 ◽  
Author(s):  
J. G. Moore ◽  
S. A. Schorn ◽  
J. Moore

Moore et al. measured the six Reynolds stresses in a tip leakage vortex in a linear turbine cascade. Stress tensor analysis, as used in classical mechanics, has been applied to the measured turbulence stress tensors. Principal directions and principal normal stresses are found. A solid surface model, or three-dimensional glyph, for the Reynolds stress tensor is proposed and used to view the stresses throughout the tip leakage vortex. Modeled Reynolds stresses using the Boussinesq approximation are obtained from the measured mean velocity strain rate tensor. The comparison of the principal directions and the three-dimensional graphic representations of the strain and Reynolds stress tensors aids in the understanding of the turbulence and what is required to model it.


Author(s):  
Jean-François Monier ◽  
Nicolas Poujol ◽  
Mathieu Laurent ◽  
Feng Gao ◽  
Jérôme Boudet ◽  
...  

The present study aims at analysing the Boussinesq constitutive relation validity in a corner separation flow of a compressor cascade. The Boussinesq constitutive relation is commonly used in Reynolds-averaged Navier-Stokes (RANS) simulations for turbomachinery design. It assumes an alignment between the Reynolds stress tensor and the zero-trace mean strain-rate tensor. An indicator that measures the alignment between these tensors is used to test the validity of this assumption in a high fidelity large-eddy simulation. Eddy-viscosities are also computed using the LES database and compared. A large-eddy simulation (LES) of a LMFA-NACA65 compressor cascade, in which a corner separation is present, is considered as reference. With LES, both the Reynolds stress tensor and the mean strain-rate tensor are known, which allows the construction of the indicator and the eddy-viscosities. Two constitutive relations are evaluated. The first one is the Boussinesq constitutive relation, while the second one is the quadratic constitutive relation (QCR), expected to render more anisotropy, thus to present a better alignment between the tensors. The Boussinesq constitutive relation is rarely valid, but the QCR tends to improve the alignment. The improvement is mainly present at the inlet, upstream of the corner separation. At the outlet, the correction is milder. The eddy-viscosity built with the LES results are of the same order of magnitude as those built as the ratio of the turbulent kinetic energy k and the turbulence specific dissipation rate ω. They also show that the main impact of the QCR is to rotate the mean strain-rate tensor in order to realign it with the Reynolds stress tensor, without dilating it.


1994 ◽  
Vol 269 ◽  
pp. 143-168 ◽  
Author(s):  
Arne V. Johansson ◽  
Magnus Hallbäck

The most general form for the rapid pressure—strain rate, within the context of classical Reynolds-stress transport (RST) closures for homogeneous flows, is derived, and truncated forms are obtained with the aid of rapid distortion theory. By a classical RST-closure we here denote a model with transport equations for the Reynolds stress tensor and the total dissipation rate. It is demonstrated that all earlier models for the rapid pressure—strain rate within the class of classical Reynolds-stress closures can be formulated as subsets of the general form derived here. Direct numerical simulations were used to show that the dependence on flow parameters, such as the turbulent Reynolds number, is small, allowing rapid distortion theory to be used for the determination of model parameters. It was shown that such a nonlinear description, of fourth order in the Reynolds-stress anisotropy tensor, is quite sufficient to very accurately model the rapid pressure—strain in all cases of irrotational mean flows, but also to get reasonable predictions in, for example, a rapid homogeneous shear flow. Also, the response of a sudden change in the orientation of the principal axes of a plane strain is investigated for the present model and models proposed in the literature. Inherent restrictions on the predictive capability of Reynolds-stress closures for rotational effects are identified.


Author(s):  
Joan G. Moore ◽  
Scott A. Schorn ◽  
John Moore

Moore et al. measured the six Reynolds stresses in a tip leakage vortex in a linear turbine cascade. Stress tensor analysis, as used in classical mechanics, has been applied to the measured turbulence stress tensors. Principal directions and principal normal stresses are found. A solid surface model, or 3-d glyph, for the Reynolds stress tensor is proposed and used to view the stresses throughout the tip leakage vortex. Modelled Reynolds stresses using the Boussinesq approximation are obtained from the measured mean velocity strain rate tensor. The comparison of the principal directions and the 3-d graphical representations of the strain and Reynolds stress tensors aids in the understanding of the turbulence and what is required to model it.


2003 ◽  
Vol 476 ◽  
pp. 63-68 ◽  
Author(s):  
J. WEIS ◽  
K. HUTTER

This article shows how Euclidean invariance can be preserved in the so-called algebraic Reynolds stress model (ARSM) approximation. This approximation is used to reduce the transport equation for the Reynolds stresses to an explicit algebraic relation. A number of known models, which make use of this approximation, are not form-invariant under transformations to rotating coordinate systems. A simple extension is presented to show how this artifact can be removed.


Author(s):  
H. Naji ◽  
O. El Yahyaoui ◽  
G. Mompean

The ability of two explicit algebraic Reynolds stress models (EARSMs) to accurately predict the problem of fully turbulent flow in a straight square duct is studied. The first model is devised by Gatski and Rumsey (2001) and the second is the one derived by Wallin and Johansson (2000). These models are studied using a priori procedure based on data resulting from direct numerical simulation (DNS) of the Navier-Stokes equations, which is available for this problem. For this case, we show that the equilibrium assumption for the anisotropy tensor is found to be correct. The analysis leans on the maps of the second and third invariants of the Reynolds stress tensor. In order to handle wall-proximity effects in the near-wall region, damping functions are implemented in the two models. The predictions and DNS obtained for a Reynolds number of 4800 both agree well and show that these models are able to predict such flows.


Author(s):  
Yuanchao Li ◽  
Huang Chen ◽  
Joseph Katz

Modeling of turbulent flows in axial turbomachines is challenging due to the high spatial and temporal variability in the distribution of the strain rate components, especially in the tip region of rotor blades. High-resolution stereo PIV measurements performed in a refractive index matched facility in a series of closely-spaced planes provide a comprehensive database for determining all the terms in the Reynolds stress and strain rate tensors. Results are also used for calculating the turbulent kinetic energy production rate and transport terms by mean flow and turbulence. They elucidate some but not all of the observed phenomena, such as the high anisotropy, high turbulence levels in the vicinity of the tip leakage vortex (TLV) center, and in the shear layer connecting it to the blade suction side (SS) tip corner. The applicability of popular Reynolds stress models based on eddy-viscosity is also evaluated by calculating it from the ratio between stress and strain components. Results vary substantially, depending on which components are involved, ranging from very large positive to negative values. In some areas, e.g., in the tip gap and around the TLV, the local stresses and strains do not appear to be correlated at all. In terms of effect on the mean flow, for most of the tip region, the mean advection terms are much higher than the Reynolds stress spatial gradients, i.e., the flow dynamics is dominated by pressure-driven transport. However, they are of similar magnitude in the shear layer, where modeling would be particularly challenging.


Sign in / Sign up

Export Citation Format

Share Document