scholarly journals Application of Model Based Systems Engineering for the Conceptual Design of a Hybrid-Electric ATR 42-500: From System Architecting to System Simulation

Author(s):  
Federico Cappuzzo ◽  
Olivier Broca ◽  
Stavros Vouros ◽  
Ioannis Roumeliotis ◽  
Calum Scullion

Abstract The progress in aerospace technology over the recent years led to the development of more sophisticated and integrated systems. To cope with this complexity, the aerospace industry is seeing a progressive trend towards adopting Model-Based Systems Engineering (MBSE) in various stages of the product development cycle. The ability to capture emerging behavior, mitigation of risk and improved communication among different stakeholders are some key benefits that MBSE provides over traditional methods for complex systems and processes. This paper attempts to bridge the gap between system architecting and system simulation activities by proposing a methodology to facilitate seamless flow of information between the two development aspects. This methodology was applied to the development of a parallel hybrid-electric version of the ATR 42–500. The use case was designed for a regional mission of 400 nautical miles with the ability to meet regulation requirement of carrying enough reserves for landing at an alternate airport. An integrated systems model, consisting of gas turbine engine, electric powertrain, and flight dynamics, was developed with Simcenter Amesim to analyze the dynamics performance of the aircraft throughout the whole mission. The key metrics evaluated were fuel consumption, take-off weight and the Energy Specific Air Range (ESAR) of the aircraft. As environmental regulations are becoming more stringent, pollutant and noise emissions were considered in the study. The most promising hybrid configurations are recognized, the potential benefits are quantified highlighting the strong potential of System Architecting and System Simulation to provide valuable insights early in the development cycle, reducing the time and cost of product development.

Systems ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 7 ◽  
Author(s):  
Azad Madni ◽  
Carla Madni ◽  
Scott Lucero

Digital twin, a concept introduced in 2002, is becoming increasingly relevant to systems engineering and, more specifically, to model-based system engineering (MBSE). A digital twin, like a virtual prototype, is a dynamic digital representation of a physical system. However, unlike a virtual prototype, a digital twin is a virtual instance of a physical system (twin) that is continually updated with the latter’s performance, maintenance, and health status data throughout the physical system’s life cycle. This paper presents an overall vision and rationale for incorporating digital twin technology into MBSE. The paper discusses the benefits of integrating digital twins with system simulation and Internet of Things (IoT) in support of MBSE and provides specific examples of the use and benefits of digital twin technology in different industries. It concludes with a recommendation to make digital twin technology an integral part of MBSE methodology and experimentation testbeds.


Author(s):  
David Inkermann

AbstractThe high interaction between process and product models in product development and systems engineering (SE) is common sense. However, most research in the field of model based systems engineering (MBSE) focusses of physical systems (hardware and software). The authors claim that this focus is a main reason for the low acceptance and high effort for implementation of SE and MBSE in industrial practice. Thus, this contribution aims at supporting an integrative analysis and synthesis of process and product models by introducing the concept and framework of Model-based Process Engineering. Based on established research this framework introduces three main systems, namely the system of processes, system of product models, and system of tools to describe complex product development. The main contribution of this work is a preliminary concept to structure and link the systems of processes and product models. Besides form the description of the main relations between the systems an integrated modelling concept to represent links between the process and product model system is proposed.


2016 ◽  
Vol 26 (s1) ◽  
pp. 70-82 ◽  
Author(s):  
Hans Parthasarathi ◽  
S Ramachandra ◽  
PN Srinivasamurthy

Sign in / Sign up

Export Citation Format

Share Document