Model-Based Systems Engineering for Aero Gas Turbine Engine Subsystems

2016 ◽  
Vol 26 (s1) ◽  
pp. 70-82 ◽  
Author(s):  
Hans Parthasarathi ◽  
S Ramachandra ◽  
PN Srinivasamurthy
Author(s):  
Seyyed Hamid Reza Hosseini ◽  
Hiwa Khaledi ◽  
Mohsen Reza Soltani

Gas turbine fault identification has been used worldwide in many aero and land engines. Model based techniques have improved isolation of faults in components and stages’ fault trend monitoring. In this paper a powerful nonlinear fault identification system is developed in order to predict the location and trend of faults in two major components: compressor and turbine. For this purpose Siemens V94.2 gas turbine engine is modeled one dimensionally. The compressor is simulated using stage stacking technique, while a stage by stage blade cooling model has been used in simulation of the turbine. New fault model has been used for turbine, in which a degradation distribution has been considered for turbine stages’ performance. In order to validate the identification system with a real case, a combined fault model (a combination of existing faults models) for compressor is used. Also the first stage of the turbine is degraded alone while keeping the other stages healthy. The target was to identify the faulty stages not faulty components. The imposed faults are one of the most common faults in a gas turbine engine and the problem is one of the most difficult cases. Results show that the fault diagnostic system could isolate faults between compressor and turbine. It also predicts the location of faulty stages of each component. The most interesting result is that the fault is predicted only in the first stage (faulty stage) of the turbine while other stages are identified as healthy. Also combined fault of compressor is well identified. However, the magnitude of degradation could not be well predicted but, using more detailed models as well as better data from gas turbine exhaust temperature, will enhance diagnostic results.


Author(s):  
August J. Rolling ◽  
Aaron R. Byerley ◽  
Charles F. Wisniewski

This paper is intended to serve as a template for incorporating technical management majors into a traditional engineering design course. In 2002, the Secretary of the Air Force encouraged the USAF Academy to initiate a new interdisciplinary academic major related to systems engineering. This direction was given in an effort to help meet the Air Force’s growing need for “systems” minded officers to manage the development and acquisition of its ever more complex weapons systems. The curriculum for the new systems engineering management (SEM) major is related to the “engineering of large, complex systems and the integration of the many subsystems that comprise the larger system” and differs in the level of technical content from the traditional engineering major. The program allows emphasis in specific cadet-selected engineering tracks with additional course work in human systems, operations research, and program management. Specifically, this paper documents how individual SEM majors have been integrated into aeronautical engineering design teams within a senior level capstone course to complete the preliminary design of a gas turbine engine. As the Aeronautical engineering (AE) cadets performed the detailed engine design, the SEM cadets were responsible for tracking performance, cost, schedule, and technical risk. Internal and external student assessments indicate that this integration has been successful at exposing both the AE majors and the SEM majors to the benefits of “systems thinking” by giving all the opportunity to employ SE tools in the context of a realistic aircraft engine design project.


2013 ◽  
Vol 15 (6) ◽  
pp. 1794-1808 ◽  
Author(s):  
Feng Lu ◽  
Yiqiu Lv ◽  
Jinquan Huang ◽  
Xiaojie Qiu

Author(s):  
August J. Rolling ◽  
Aaron R. Byerley ◽  
Charles F. Wisniewski

This paper is intended to serve as a template for incorporating technical management majors into a traditional engineering design course. In 2002, the Secretary of the Air Force encouraged the United States Air Force (USAF) Academy to initiate a new interdisciplinary academic major related to systems engineering. This direction was given in an effort to help meet the Air Force’s growing need for “systems” minded officers to manage the development and acquisition of its ever more complex weapons systems. The curriculum for the new systems engineering management (SEM) major is related to the “engineering of large, complex systems and the integration of the many subsystems that comprise the larger system” and differs in the level of technical content from the traditional engineering major. The program allows emphasis in specific cadet—selected engineering tracks with additional course work in human systems, operations research, and program management. Specifically, this paper documents how individual SEM majors have been integrated into aeronautical engineering design teams within a senior level capstone course to complete the preliminary design of a gas turbine engine. As the Aeronautical Engineering (AE) cadets performed the detailed engine design, the SEM cadets were responsible for tracking performance, cost, schedule, and technical risk. Internal and external student assessments indicate that this integration has been successful at exposing both the AE majors and the SEM majors to the benefits of “systems thinking” by giving all the opportunity to employ SE tools in the context of a realistic aircraft engine design project.


Author(s):  
Thomas M. Bodman ◽  
Thomas P. Priore

A salt ingestion test was performed on the AGT 1500 recuperated automotive gas turbine engine at the Naval Ship Systems Engineering Station (NAVSSES) for the U.S. Marine Corps. The Marine Corps was concerned about the AGT 1500’s ability to tolerate their amphibious and maritime environments. The AGT 1500 was operated for two 450 hour endurance runs burning Navy diesel fuel and ingesting aerosol salt. It suffered no failures or significant loss of power as a result of the ingested salt or operations with Navy diesel fuel.


Author(s):  
Oliver F. Qi ◽  
N. R. L. Maccallum

This paper describes a model-based control approach to synthesizing a nonlinear controller for a single-spool gas turbine engine. Since the main control variable, engine thrust, cannot be directly measured, a model-based observer is constructed using a nonlinear model of the engine in order to provide an on-line estimation of the thrust for feedback control. Both proportional and proportional-integral (PI) observers have been used in the model-based observer design. The latter is intended to provide a robust estimation in the event of modeling errors. The controls are the fuel flow and final nozzle area, and the control structure is the PI controller designed using the KQ (K-matrix compensator, Q-desired response) multivariable design technique. A study has been made of the model-based observer control scheme when the engine is subjected to the disturbance of inlet flow distortion. The results are shown to be acceptable in terms of the thrust response and the transient trajectory on the compressor characteristic.


Author(s):  
Rolf F. Orsagh ◽  
Jeremy Sheldon ◽  
Christopher J. Klenke

Development of robust in-flight prognostics or diagnostics for oil wetted gas turbine engine components will play a critical role in improving aircraft engine reliability and maintainability. Real-time algorithms for predicting and detecting bearing and gear failures are currently being developed in parallel with emerging flight-capable sensor technologies including in-line oil debris/condition monitors, and vibration analysis MEMS. These advanced prognostic/diagnostic algorithms utilize intelligent data fusion architectures to optimally combine sensor data, with probabilistic component models to achieve the best decisions on the overall health of oil-wetted components. By utilizing a combination of health monitoring data and model-based techniques, a comprehensive component prognostic capability can be achieved throughout a components life, using model-based estimates when no diagnostic indicators are present and monitored features such as oil debris and vibration at later stages when failure indications are detectable. Implementation of these oil-wetted component prognostic modules will be illustrated in this paper using bearing and gearbox test stand run-to-failure data.


Sign in / Sign up

Export Citation Format

Share Document