Experimental Investigation of Gas Turbine Axial Diffuser Performance: Part II — Effect of Inlet Flow Profiles at On- and Off-Design Conditions

2021 ◽  
Author(s):  
Kenneth Brown ◽  
Stephen Guillot ◽  
Wing Ng ◽  
Lee Iksang ◽  
Kim Dongil ◽  
...  

Abstract An experimental investigation of the effect of inlet flow conditions and improved geometries on the performance of modern axial exhaust diffusers of gas turbines has been completed. The first article in the two-part series [1] leveraged a scaled model to examine parametric variations in both diffuser geometry and inlet flow conditions with the latter having significant consequences for diffuser performance. This second article pivots on the conclusions of the companion article and offers findings and physical insight on diffuser performance for on- and off-design inlet flow conditions. Using a high-performing diffuser design from the companion article, an experimental investigation is carried out with tailored distributions of inlet Mach distribution, inlet swirl angle, and inlet radial flow angle which are designed to replicate conditions of an industry diffuser at various loads. Six different inlet distributions were investigated including a design condition and five other conditions which feature mass flows both greater than and less than the design condition. The measurements were taken at near full-scale turbine exit Reynolds number (ReH roughly 39% of the value for an H-class diffuser) and at full-scale turbine exit Mach number. The study was accomplished in a blow-down, cold-flow wind tunnel facility, and measurements included 5-hole probe traverses at planes of interest, axial pressure distributions, strut pressure distributions, and oil-flow visualization. Over the range of inlet conditions studied, pressure recovery at the exit varied by up to 68.5% from that of on-design operation. Tracking of performance coefficients along the axial direction suggested the existence of flow phenomena which were in some cases able to be confirmed with on-strut pressure measurements and flow visualization. In addition to physical insight, the results presented here offer an experimental benchmark for the sensitivity of diffuser performance to inlet flow conditions.

Author(s):  
Kenneth Brown ◽  
Stephen Guillot ◽  
Wing Ng ◽  
Lee Iksang ◽  
Kim Dongil ◽  
...  

Abstract An experimental investigation of the effect of inlet flow conditions and improved geometries on the performance of modern axial exhaust diffusers of gas turbines has been completed. As the first of a two-part series, this article concentrates on characterizing diffuser sensitivity to parametric variations in internal geometry and inlet flow conditions. Full-factorial experiments were carried out on five parameters including the inlet Mach distribution, shape of the support struts, shape of the oil-drain strut, diffuser hade angle, and the hubcap configuration. To enable an efficient sweep of the design space, experiments were performed in this initial study at a down-scaled turbine exit Reynolds number (ReH roughly 3% of the value for an H-class diffuser) and at a full-scale turbine exit Mach number. The study was accomplished in a continuous, cold-flow wind tunnel circuit, and tailored distributions of Mach number, swirl velocity, and radial velocity derived from on-design conditions of an industry diffuser were generated. Measurements included 5-hole probe traverses at planes of interest. Diffuser performance was most sensitive to the inlet Mach distribution with losses of 0.081 points of pressure recovery due to a nonuniform Mach distribution with higher velocity near the hub versus a uniform one. Detailed comparisons of axial flow variation for a top-performing configuration versus related configurations shed physical insight regarding the evolution of kinetic energy distortion into viscous loss in the wake, as well as highlight the benefit of uniform inlet profiles in practice despite the lower theoretical recovery of such cases. The results presented here isolate the inlet flow distribution as a parameter of high interest for further study which is carried out for both on- and off-design conditions in the companion article [1].


1988 ◽  
Vol 110 (2) ◽  
pp. 258-264 ◽  
Author(s):  
W. Tabakoff ◽  
A. Hamed

This paper presents the results of an investigation of the particle dynamics and the resulting blade erosion in radial inflow turbine rotors. In order to determine the influence of the temperature, the computations were performed for cold and hot inlet flow conditions. The results indicate that the trajectories of these small 5-μm ash particles are quite sensitive to the flow temperatures. In addition, gas turbines operating under hot flow are subjected to higher local blade erosion rates compared to cold flow conditions.


Author(s):  
T. G. Papaioannou ◽  
Ch. Ch. Christofidis ◽  
D. S. Mathioulakis

The scope of this study is the investigation of the influence of a convergent nozzle type stent on the flow field of one or two downstream located 50% stenoses. Both steady and unsteady inlet flow conditions are examined. The flow is predicted using the commercial code FLUENT, and the recirculation zones downstream of each stenosis are examined through flow visualization in a suitable experimental setup.


1991 ◽  
Vol 113 (4) ◽  
pp. 660-669 ◽  
Author(s):  
H. D. Joslyn ◽  
J. J. Brasz ◽  
R. P. Dring

The ability to acquire blade loadings (surface pressure distributions) and surface flow visualization on an unshrouded centrifugal compressor impeller is demonstrated. Circumferential and streamwise static pressure distributions acquired on the stationary shroud are also presented. Data were acquired in a new facility designed for centrifugal compressor aerodynamic research. Blade loadings calculated with a blade-to-blade potential flow analysis are compared with the measured results. Surface flow visualization reveals some complex aspects of the flow on the surface of the impeller blading and hub.


2021 ◽  
pp. 1-48
Author(s):  
Zhi Tao ◽  
Zhendong Guo ◽  
Liming Song ◽  
Jun Li

Abstract With the ever-increasing aerodynamic and thermal loads, the endwalls of modern gas turbines have become critical areas that are susceptible to manufacturing and operational uncertainties, making them highly prone to thermal failures. Therefore, it is of vital importance to quantify the impacts of input uncertainties on the aero-thermal performance of endwalls. Firstly, based on the Kriging surrogate, an efficient uncertainty quantification (UQ) method suitable for expensive CFD problems is proposed. Using this method, the impacts of slot geometry deviations (slot width, endwall misalignment) and mainstream condition fluctuations (turbulence intensity, inlet flow angle) on the aero-thermal performance of endwalls are quantified. Results show that the actual performance of endwalls has a high probability of deviating from its nominal value. The maximum deviations of aerodynamic loss, area-averaged film cooling effectiveness, and area-averaged Nusselt number reach 0.33%, 45%, and 5.0%, respectively. The critical regions that are most sensitive to the input uncertainties are also identified. Secondly, a global sensitivity analysis method is also performed to pick out the significant uncertain parameters and explore the relationship between input uncertainties and performance output. The inlet flow angle is proved to be the most significant parameter among the four input uncertain parameters. Besides, a positive incidence angle is found to be detrimental to both the aerodynamic performance and the thermal management of endwalls. At last, the influence mechanisms of the inlet flow angle on endwall aero-thermal performance are clarified by a fundamental analysis of flow and thermal fields.


Author(s):  
Laurence K. H. Leung

Dryout powers have been evaluated at selected inlet-flow conditions for two proposed designs of CANDU® bundles and compared to those of the 37-element and CANFLEX® bundles. These proposed designs consist of a large centre element (18 mm for one design and 20 mm for the other) and three rings of elements of 11.5 mm in outer diameter. The critical heat flux for each bundle design has been predicted using the correlation derived with Freon data obtained from the corresponding full-scale bundle test. An improvement in dryout power has been shown for the proposed design having a 20-mm centre element with a radial power profile corresponding to the natural-uranium fuel as compared to other bundles, particularly the natural-uranium 37-element bundle, with a symmetric cosine axial power profile. The dryout power improvement is further enhanced for the upstream-skewed axial power profile.


1980 ◽  
Vol 102 (1) ◽  
pp. 7-13 ◽  
Author(s):  
A. H. Stenning

Although uniform inlet conditions are highly desirable and system designers attempt to insure distortion-free flow entering compressors, situations frequently arise in which substantial total pressure, velocity, and angle variations exist at the compressor inlet. Aircraft gas turbines are particularly prone to inlet distortion problems due to changes in aircraft attitude and the effect of the airframe on the inlet flow conditions, but industrial insallations may also suffer from inlet distortion in cases where poorly designed bends have been installed upstream of the compressor. In this paper, problems associated with inlet distortion are discussed and some of the simpler techniques for analyzing the effects of circumferential inlet distortion are presented.


Sign in / Sign up

Export Citation Format

Share Document