Experimental Investigation of Gas Turbine Axial Diffuser Performance: Part I — Parametric Analysis of Influential Variables

Author(s):  
Kenneth Brown ◽  
Stephen Guillot ◽  
Wing Ng ◽  
Lee Iksang ◽  
Kim Dongil ◽  
...  

Abstract An experimental investigation of the effect of inlet flow conditions and improved geometries on the performance of modern axial exhaust diffusers of gas turbines has been completed. As the first of a two-part series, this article concentrates on characterizing diffuser sensitivity to parametric variations in internal geometry and inlet flow conditions. Full-factorial experiments were carried out on five parameters including the inlet Mach distribution, shape of the support struts, shape of the oil-drain strut, diffuser hade angle, and the hubcap configuration. To enable an efficient sweep of the design space, experiments were performed in this initial study at a down-scaled turbine exit Reynolds number (ReH roughly 3% of the value for an H-class diffuser) and at a full-scale turbine exit Mach number. The study was accomplished in a continuous, cold-flow wind tunnel circuit, and tailored distributions of Mach number, swirl velocity, and radial velocity derived from on-design conditions of an industry diffuser were generated. Measurements included 5-hole probe traverses at planes of interest. Diffuser performance was most sensitive to the inlet Mach distribution with losses of 0.081 points of pressure recovery due to a nonuniform Mach distribution with higher velocity near the hub versus a uniform one. Detailed comparisons of axial flow variation for a top-performing configuration versus related configurations shed physical insight regarding the evolution of kinetic energy distortion into viscous loss in the wake, as well as highlight the benefit of uniform inlet profiles in practice despite the lower theoretical recovery of such cases. The results presented here isolate the inlet flow distribution as a parameter of high interest for further study which is carried out for both on- and off-design conditions in the companion article [1].

2021 ◽  
Author(s):  
Kenneth Brown ◽  
Stephen Guillot ◽  
Wing Ng ◽  
Lee Iksang ◽  
Kim Dongil ◽  
...  

Abstract An experimental investigation of the effect of inlet flow conditions and improved geometries on the performance of modern axial exhaust diffusers of gas turbines has been completed. The first article in the two-part series [1] leveraged a scaled model to examine parametric variations in both diffuser geometry and inlet flow conditions with the latter having significant consequences for diffuser performance. This second article pivots on the conclusions of the companion article and offers findings and physical insight on diffuser performance for on- and off-design inlet flow conditions. Using a high-performing diffuser design from the companion article, an experimental investigation is carried out with tailored distributions of inlet Mach distribution, inlet swirl angle, and inlet radial flow angle which are designed to replicate conditions of an industry diffuser at various loads. Six different inlet distributions were investigated including a design condition and five other conditions which feature mass flows both greater than and less than the design condition. The measurements were taken at near full-scale turbine exit Reynolds number (ReH roughly 39% of the value for an H-class diffuser) and at full-scale turbine exit Mach number. The study was accomplished in a blow-down, cold-flow wind tunnel facility, and measurements included 5-hole probe traverses at planes of interest, axial pressure distributions, strut pressure distributions, and oil-flow visualization. Over the range of inlet conditions studied, pressure recovery at the exit varied by up to 68.5% from that of on-design operation. Tracking of performance coefficients along the axial direction suggested the existence of flow phenomena which were in some cases able to be confirmed with on-strut pressure measurements and flow visualization. In addition to physical insight, the results presented here offer an experimental benchmark for the sensitivity of diffuser performance to inlet flow conditions.


Author(s):  
Hoshio Tsujita ◽  
Masanao Kaneko

Abstract Gas turbines widely applied to power generation and aerospace propulsion systems are continuously enhanced in efficiency for the reduction of environmental load. The energy recovery efficiency from working fluid in a turbine component constituting gas turbines can be enhanced by the increase of turbine blade loading. However, the increase of turbine blade loading inevitably intensifies the secondary flows, and consequently increases the associated loss generation. The development of the passage vortex is strongly influenced by the pitchwise pressure gradient on the endwall in the cascade passage. In addition, a practical high pressure turbine stage is generally driven under transonic flow conditions where the shock wave strongly influences the pressure distribution on the endwall. Therefore, it becomes very important to clarify the effects of the shock wave formation on the secondary flow behavior in order to increase the turbine blade loading without the deterioration of efficiency. In this study, the two-dimensional and the three-dimensional transonic flows in the HS1A linear turbine cascade at the design incidence angle were analyzed numerically by using the commercial CFD code with the assumption of steady compressible flow. The isentropic exit Mach number was varied from the subsonic to the supersonic conditions in order to examine the effects of development of shock wave caused by the increase of exit Mach number on the secondary flow behavior. The increase of exit Mach number induced the shock across the passage and increased its obliqueness. The increase of obliqueness reduced the cross flow on the endwall by moving the local minimum point of static pressure along the suction surface toward the trailing edge. As a consequence, the increase of exit Mach number attenuated the passage vortex.


Author(s):  
Majed Sammak ◽  
Egill Thorbergsson ◽  
Tomas Grönstedt ◽  
Magnus Genrup

The aim of this study was to compare single- and twin-shaft oxy-fuel gas turbines in a semiclosed oxy-fuel combustion combined cycle (SCOC–CC). This paper discussed the turbomachinery preliminary mean-line design of oxy-fuel compressor and turbine. The conceptual turbine design was performed using the axial through-flow code luax-t, developed at Lund University. A tool for conceptual design of axial compressors developed at Chalmers University was used for the design of the compressor. The modeled SCOC–CC gave a net electrical efficiency of 46% and a net power of 106 MW. The production of 95% pure oxygen and the compression of CO2 reduced the gross efficiency of the SCOC–CC by 10 and 2 percentage points, respectively. The designed oxy-fuel gas turbine had a power of 86 MW. The rotational speed of the single-shaft gas turbine was set to 5200 rpm. The designed turbine had four stages, while the compressor had 18 stages. The turbine exit Mach number was calculated to be 0.6 and the calculated value of AN2 was 40 · 106 rpm2m2. The total calculated cooling mass flow was 25% of the compressor mass flow, or 47 kg/s. The relative tip Mach number of the compressor at the first rotor stage was 1.15. The rotational speed of the twin-shaft gas generator was set to 7200 rpm, while that of the power turbine was set to 4800 rpm. A twin-shaft turbine was designed with five turbine stages to maintain the exit Mach number around 0.5. The twin-shaft turbine required a lower exit Mach number to maintain reasonable diffuser performance. The compressor turbine was designed with two stages while the power turbine had three stages. The study showed that a four-stage twin-shaft turbine produced a high exit Mach number. The calculated value of AN2 was 38 · 106 rpm2m2. The total calculated cooling mass flow was 23% of the compressor mass flow, or 44 kg/s. The compressor was designed with 14 stages. The preliminary design parameters of the turbine and compressor were within established industrial ranges. From the results of this study, it was concluded that both single- and twin-shaft oxy-fuel gas turbines have advantages. The choice of a twin-shaft gas turbine can be motivated by the smaller compressor size and the advantage of greater flexibility in operation, mainly in the off-design mode. However, the advantages of a twin-shaft design must be weighed against the inherent simplicity and low cost of the simple single-shaft design.


Author(s):  
Sabri Deniz ◽  
Edward M. Greitzer ◽  
Nicholas A. Cumpsty

This is Part 2 of an examination of influence of inlet flow conditions on the performance and operating range of centrifugal compressor vaned diffusers. The paper describes tests of straight-channel type diffuser, sometimes called a wedge-vane diffuser, and compares the results with those from the discrete-passage diffusers described in Part 1. Effects of diffuser inlet Mach number, flow angle, blockage, and axial flow non-uniformity on diffuser pressure recovery and operating range are addressed. The straight-channel diffuser investigated has 30 vanes and was designed for the same aerodynamic duty as the discrete-passage diffuser described in Part 1. The ranges of the overall pressure recovery coefficients were 0.65–0.78 for the straight-channel diffuser and 0.60–0.70 for the discrete-passage diffuser; the pressure recovery of the straight-channel diffuser was roughly 10% higher than that of the discrete-passage diffuser. Both types of the diffusers showed similar behavior regarding the dependence on diffuser inlet flow angle and the insensitivity of the performance to inlet flow field axial distortion and Mach number. The operating range of the straight-channel diffuser, as for the discrete-passage diffusers was limited by the onset of rotating stall at a fixed momentum-averaged flow angle into the diffuser, which was for the straight-channel diffuser, αcrit = 70° ±0.5°. The background, nomenclature and description of the facility and method are all given in Part 1.


Author(s):  
Neil Fourie ◽  
S. J. van der Spuy ◽  
T. W. von Backström

The use of air-cooled steam condensers (ACSCs) is preferred in the chemical and power industry due to their ability to adhere to stringent environmental and water use regulations. ACSC performance is, however, highly dependent on the prevailing wind conditions. Research has shown that the presence of wind reduces the performance of ACSCs. It has been found that cross-winds (wind perpendicular to the longest side of the ACSC) cause distorted inlet flow conditions, particularly at the upstream peripheral fans near the symmetry plane of the ACSC. These fans are subjected to what is referred to as “two-dimensional” wind conditions, which are characterized by flow separation on the upstream edge of the fan inlets. Experimental investigations into inlet flow distortion have simulated these conditions by varying the fan platform height. Low platform heights resulted in higher levels of inlet flow distortion, as also found to exist with high cross-wind velocities. The similarity between platform height and cross-wind velocity is investigated in this study by conducting experimental and numerical investigations into the effect of distorted inlet flow conditions on the performance of various fan configurations (representative of configurations used in the South-African power industry). A correlation between system volumetric effectiveness, platform height, and cross-wind velocity is derived which provides a means to compare platform height and cross-wind velocity effects.


2021 ◽  
Vol 2131 (3) ◽  
pp. 032081
Author(s):  
M Mesbah ◽  
V G Gribin ◽  
K Souri

Abstract This paper presents numerical simulation results of a three-dimensional (3D) transitional flow in a stator cascade of an axial turbine. The influences of the main geometric parameters and flow characteristics including, the blade aspect ratio, pitch-to-chord ratio, inlet flow angle, and exit Mach number, on secondary flows development and end-wall losses, were studied. The numerical results were validated by the results of experiments conducted in the laboratory of the steam and gas turbine faculty of the Moscow Power Engineering Institute. The maximum difference between computed and experimental results was 2.4 %. The total energy losses decrease by 20 % when the exit Mach number changes from 0.38 to 0.8. Numerical results indicated that the blade aspect ratio had the most effect on secondary flow losses. The total energy losses increase by 46.6 % when the aspect ratio decreases from 1 to 0.25. The total loss of energy by 13.2 % decreases by increasing the inlet flow angle from 60 degrees to 90 degrees. Then by increasing the inlet flow angle from 90 to 110 degrees, the total loss rises by 3.6%. As the pitch-to-chord ratio increases from 0.7 to 0.75, the total energy losses are reduced by 12.2 %. Then by increasing the pitch-to-chord ratio from 0.75 to 0.8, the total energy losses increase by 6 %. As with experimental data, the numerical results showed that the optimal inlet flow angle and relative pitch for the cascade are 90 degrees and 0.75, respectively.


1988 ◽  
Vol 110 (2) ◽  
pp. 258-264 ◽  
Author(s):  
W. Tabakoff ◽  
A. Hamed

This paper presents the results of an investigation of the particle dynamics and the resulting blade erosion in radial inflow turbine rotors. In order to determine the influence of the temperature, the computations were performed for cold and hot inlet flow conditions. The results indicate that the trajectories of these small 5-μm ash particles are quite sensitive to the flow temperatures. In addition, gas turbines operating under hot flow are subjected to higher local blade erosion rates compared to cold flow conditions.


1988 ◽  
Vol 110 (4) ◽  
pp. 497-503 ◽  
Author(s):  
A. Mobarak ◽  
M. G. Khalafallah ◽  
A. M. Osman ◽  
H. A. Heikal

The purpose of this paper is to investigate the flow field downstream of turbine cascades of low aspect ratio, often used in vehicles and small turbomachines. Experimental investigation was carried out to study the flow downstream of three sets of turbine cascades having the same blade turning angle of about 83 deg but different profiles. The total energy losses were measured at several planes downstream of the cascade of blades in order to determine the changes in gross secondary flow loss coefficient and the growth of the mixing loss with distance downstream. Influence of inlet boundary layer thickness, aspect ratio, and exit Mach number on the nature of the flow at the exit plane of the cascade and total energy loss were studied. The tests were performed with four values of aspect ratio: 1.16, 0.8, 0.5, and 0.25. Some new correlations were deduced that predict energy loss coefficients as a function of distance downstream, aspect ratio, and exit Mach number as well as the upstream boundary layer thickness. The test results compare well with other published correlations.


Author(s):  
Wenpeng Zhang ◽  
Lijian Shi ◽  
Fangping Tang ◽  
Xiaohui Duan ◽  
Haiyu Liu ◽  
...  

The inlet flow conditions will directly affect impeller performance, which is of great concern to pump designers. In this study, based on two axial-flow pump devices, the influence of the evaluation criteria of inlet flow conditions and numerical grid scales on the accuracy of the simulation are investigated, the correctness of the numerical simulation are verified by experiments. The axial velocity distribution uniformity, axial velocity weighted average angle and hydraulic loss are calculated with three grid scales commonly used in engineering. The applicability of three turbulence models in engineering is verified. The influence of the uniformity of the axial velocity distribution on the impeller is quantitatively explored by installing a group of vortex generators. The results show that the simulation errors of the common formula of the axial velocity distribution uniformity for the elbow inlet passage and front-shaft tubular inlet passage are 16.3% and 14.6%, respectively; the modified formula limited the computational error to 0.2%, which reduced the axial velocity distribution uniformity dependence on the grid. The quantitative relationship between inlet flow conditions and pump performance was established, as the impeller efficiency decreased linearly with decreasing axial velocity distribution uniformity.


1980 ◽  
Vol 102 (1) ◽  
pp. 7-13 ◽  
Author(s):  
A. H. Stenning

Although uniform inlet conditions are highly desirable and system designers attempt to insure distortion-free flow entering compressors, situations frequently arise in which substantial total pressure, velocity, and angle variations exist at the compressor inlet. Aircraft gas turbines are particularly prone to inlet distortion problems due to changes in aircraft attitude and the effect of the airframe on the inlet flow conditions, but industrial insallations may also suffer from inlet distortion in cases where poorly designed bends have been installed upstream of the compressor. In this paper, problems associated with inlet distortion are discussed and some of the simpler techniques for analyzing the effects of circumferential inlet distortion are presented.


Sign in / Sign up

Export Citation Format

Share Document