The Use of Active Ionic Polymers in Dynamic Skin Friction Measurements

Volume 1 ◽  
2004 ◽  
Author(s):  
Ali Etebari ◽  
Barbar Akle ◽  
Kevin Farinholt ◽  
Matthew Bennet ◽  
Donald J. Leo ◽  
...  

A class of wall shear stress sensors has been developed. The potential of ionic polymer membrane transducers for measuring skin friction in liquid flows is demonstrated. Ionic polymer transducers are thin polymer membranes that exhibit high sensitivity to mechanical strain, and have been shown to demonstrate sensitivities two orders of magnitude higher in charge-sensing mode than piezoelectric polymers such as PVDF. Thus, they are as sensitive to mechanical strain as piezoelectric ceramics (i.e. PZT) but have the high compliance and durability of a polymer. The application of active ionic polymers in delivering easy to implement, accurate, dynamic measurements of skin friction in harsh environments promises significant advantages over current technologies. In particular, a robust technique for measuring wall shear stress is needed to assess the effectiveness of new friction-reducing techniques, including the use of lubricants and micro-bubble injection within the viscous sublayer. Conventional technologies have been unable to provide sufficiently accurate measurements over a large range of fluid velocity fluctuation scales. Moreover, their implementation can be complicated in the case of non-flush mounting sensors, and their applicability is often limited to forgiving environments. An initial feasibility test was designed with the objective of replicating classic theoretical and experimental skin friction coefficient results for a sharp edge flat plate boundary layer. An ionic polymer and a piezoelectric film (PVDF) were evaluated for Reynolds numbers ranging from the laminar flow regime to fully turbulent flow. The PVDF sensor displayed no discernable response to wall shear. The ionic polymer sensor, however, showed significant response to wall shear and strong correlation with the Reynolds number. In addition, a Stokes oscillating plate apparatus was designed for calibration and testing of the ionic polymer sensor.

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1587
Author(s):  
Dolat Khan ◽  
Ata ur Rahman ◽  
Gohar Ali ◽  
Poom Kumam ◽  
Attapol Kaewkhao ◽  
...  

Due to the importance of wall shear stress effect and dust fluid in daily life fluid problems. This paper aims to discover the influence of wall shear stress on dust fluids of fluctuating flow. The flow is considered between two parallel plates that are non-conducting. Due to the transformation of heat, the fluid flow is generated. We consider every dust particle having spherical uniformly disperse in the base fluid. The perturb solution is obtained by applying the Poincare-Lighthill perturbation technique (PLPT). The fluid velocity and shear stress are discussed for the different parameters like Grashof number, magnetic parameter, radiation parameter, and dusty fluid parameter. Graphical results for fluid and dust particles are plotted through Mathcad-15. The behavior of base fluid and dusty fluid is matching for different embedded parameters.


2019 ◽  
Vol 866 ◽  
pp. 810-840 ◽  
Author(s):  
Aika Kawagoe ◽  
Satoshi Nakashima ◽  
Mitul Luhar ◽  
Koji Fukagata

This paper evaluates and modifies the so-called suboptimal control technique for turbulent skin friction reduction through a combination of low-order modelling and direct numerical simulation (DNS). In a previous study, Nakashima et al. (J. Fluid Mech., vol. 828, 2017, pp. 496–526) employed resolvent analysis to show that the efficacy of suboptimal control was mixed across spectral space when the streamwise wall shear stress (case ST) was used as a sensor signal, i.e. specific regions of spectral space showed drag increment. This observation suggests that drag reduction may be attained if control is applied selectively in spectral space. DNS results presented in the present study, however, do not show a significant effect on the flow with selective control. A posteriori analyses attribute this lack of efficacy to a much lower actuation amplitude in the simulations compared to model assumptions. Building on these observations, resolvent analysis is used to design and provide a preliminary assessment of modified control laws that also rely on sensing the streamwise wall shear stress. Control performance is then assessed by means of DNS. The proposed control laws generate as much as $10\,\%$ drag reduction, and these results are broadly consistent with resolvent-based predictions. The physical mechanisms leading to drag reduction are assessed via conditional sampling. It is shown that the new control laws effectively suppress the near-wall quasi-streamwise vortices. A physically intuitive explanation is proposed based on a separate evaluation of clockwise and anticlockwise vortices.


Author(s):  
Takashi Kodama ◽  
Shinsuke Mochizuki

New optical method for measurement of the local wall shear stress has been developed by using thermo-chromic liquid crystal temperature measurement based on hue [1], [2] of the camera view. The flow field is the fully developed turbulent channel flow. Thin film made of thermo-chromic liquid crystal is placed on the wall. A rectangular shaped obstacle is glued on the film. The obstacle is within a region of buffer layer with height from the wall. Temperature of the film and the obstacle are slightly raised by a heater below the wall. The air flow makes non-uniform temperature distribution and non-uniform color distribution appears on the surface of the film. Relations between hue and local skin friction coefficient were examined in a turbulent air channel flow. It is indicated that a certain hue of a point is varying linearly against the corresponding local skin friction coefficient.


1997 ◽  
Vol 273 (4) ◽  
pp. E751-E758 ◽  
Author(s):  
R. Smalt ◽  
F. T. Mitchell ◽  
R. L. Howard ◽  
T. J. Chambers

The nature of the stimulus sensed by bone cells during mechanical usage has not yet been determined. Because nitric oxide (NO) and prostaglandin (PG) production appear to be essential early responses to mechanical stimulation in vivo, we used their production to compare the responsiveness of bone cells to strain and fluid flow in vitro. Cells were incubated on polystyrene film and subjected to unidirectional linear strains in the range 500–5,000 microstrain (με). We found no increase in NO or PGE2 production after loading of rat calvarial or long bone cells, MC3T3-E1, UMR-106–01, or ROS 17/2.8 cells. In contrast, exposure of osteoblastic cells to increased fluid flow induced both PGE2 and NO production. Production was rapidly induced by wall-shear stresses of 148 dyn/cm2 and was observed in all the osteoblastic populations used but not in rat skin fibroblasts. Fluid flow appeared to act through an increase in wall-shear stress. These data suggest that mechanical loading of bone is sensed by osteoblastic cells through fluid flow-mediated wall-shear stress rather than by mechanical strain.


1973 ◽  
Vol 24 (2) ◽  
pp. 87-91 ◽  
Author(s):  
J D Vagt ◽  
H Fernholz

SummaryIf surface fences are to be applied for measuring skin friction in three-dimensional boundary layers they must be calibrated for both magnitude and direction of the shear stress. Results of the calibration for fences of different height are given. Furthermore, a manufacturing process and a mounting procedure are described to obtain surface fences with identical calibration curves.


2014 ◽  
Vol 743 ◽  
pp. 202-248 ◽  
Author(s):  
Sébastien Deck ◽  
Nicolas Renard ◽  
Romain Laraufie ◽  
Pierre-Élie Weiss

AbstractA numerical investigation of the mean wall shear stress properties on a spatially developing turbulent boundary layer over a smooth flat plate was carried out by means of a zonal detached eddy simulation (ZDES) technique for the Reynolds number range $3060\leq Re_{\theta }\leq 13\, 650$. Some asymptotic trends of global parameters are suggested. Consistently with previous findings, the calculation confirms the occurrence of very large-scale motions approximately $5\delta $ to $6 \delta $ long which are meandering with a lateral amplitude of $0.3 \delta $ and which maintain a footprint in the near-wall region. It is shown that these large scales carry a significant amount of Reynolds shear stress and their influence on the skin friction, denoted $C_{f,2}$, is revisited through the FIK identity by Fukagata, Iwamoto & Kasagi (Phys. Fluids, vol. 14, 2002, p. L73). It is argued that $C_{f,2}$ is the relevant parameter to characterize the high-Reynolds-number turbulent skin friction since the term describing the spatial heterogeneity of the boundary layer also characterizes the total shear stress variations across the boundary layer. The behaviour of the latter term seems to follow some remarkable self-similarity trends towards high Reynolds numbers. A spectral analysis of the weighted Reynolds stress with respect to the distance to the wall and to the wavelength is provided for the first time to our knowledge and allows us to analyse the influence of the largest scales on the skin friction. It is shown that structures with a streamwise wavelength $\lambda _x >\delta $ contribute to more than $60\, \%$ of $C_{f,2}$, and that those larger than $\lambda _x >2\delta $ still represent approximately $45\, \%$ of $C_{f,2}$.


2021 ◽  
Author(s):  
Dolat khan ◽  
Ata ur Rahman ◽  
Gohar ali ◽  
Poom kummam

Abstract On the importance of wall shear stress effect and dust fluid in the fluid problems. The aim of this paper to discover the influence of wall shear stress on dust fluids of fluctuating flow. The flow is consider between two parallel plates which are non-conducting. Due to the transformation of heat the fluid flow is generated. We consider every dust particle having spherical uniformly disperse in the base fluid. The perturb solution is obtained by applying Poincare-Lighthill perturbation technique (PLPT). The fluid velocity along with shear stress is discussed for the different parameters like Grashof number, magnetic parameter, radiation parameter and dusty fluid parameter. Graphical results for fluid and dust particles are plotted through Mathcad-15. The behavior of base fluid and dusty fluid is matching for different embedded parameters.


2014 ◽  
Vol 629 ◽  
pp. 450-455
Author(s):  
Zambri Harun ◽  
Muhammad Syafiq ◽  
Mohd Rasidi Rasani ◽  
Shahrum Abdullah ◽  
Rozli Zulkifli ◽  
...  

This study concerns with aerodynamic drag on a passenger car. By using computational fluid dynamics (CFD) method, we found that values of skin friction coefficients for three different parts of the car: front, top and rear parts, are different. This study addresses three different basic possible flows around a car: favourable, zero and adverse pressure gradients. Generally, cars use approximately 20% of their engine power to overcome aerodynamic drag, which is generally proportional to the frontal area. The boundary layer at each position has been analyzed to ascertain the effect of wall shear stress on the car surface. It is found that the value of wall shear stress velocity is highest at the rear part, followed by front and top parts. Subsequently, it is shown that the front part has the thinnest viscous region despite not being the part with the highest local ambient velocity compared with the top and rear parts. Despite its supposed aerodynamic shape, the rear part of the car sees separation of flow and the total drag per unit area here is the largest, twice as large as front part and more than seven times larger than the top part.


Author(s):  
Thomas A. Hafner ◽  
Jae Sung Park

Reducing turbulent skin-friction drag is a subject of great interest due to the potential benefits. These benefits are reflected in applications such as aircraft and vehicles for which skin-friction drag constitutes a significant fraction of the total drag. For example, commercial airliners have up to 50% of their fuel consumption associated with turbulent drag. Thus, any drag reduction would result in substantial savings with regards to the operational cost of the airline industry. In this study, we investigated the effects of a spanwise body force on reducing skin-friction drag in turbulent channel flows. To this end, we performed direct numerical simulations (DNS) of turbulent channel flows with an applied spanwise body force. The body force consists of four control parameters: the amplitude of excitation, penetration depth, period of oscillation, and wavelength. A series of DNS were performed to investigate the effect of these parameters on drag reduction. We observed different levels of drag reduction and the magnitude of skin-friction varied considerably. The DNS results showed that the skin friction is reduced by as much as 20% with values for penetration lengths from 0.03 to 0.09 and periods between 10 and 20. An optimal combination of the four adjustable control parameters is yet to be concluded. In addition to skin-friction reduction, we found an intriguing observation from a time series of wall shear stress. When the wall shear stress is sufficiently lower than its mean value (i.e., low-drag intervals), the spanwise body force appears to significantly affect turbulent dynamics to make the wall shear stress not as chaotic as in other intervals. Specifically, the standard deviations of the peak-to-peak magnitudes of the wall shear stress during low-drag intervals are significantly lower than that of other intervals. This observation could be crucial in that it may lead to a further fundamental understanding of the drag reduction process. Moreover, it may aid in the development of more effective control schemes by way of anticipating that low-drag intervals are promising targets for drag reduction.


Sign in / Sign up

Export Citation Format

Share Document