Effects of Surface Roughness on the Pool Boiling of Water

Author(s):  
Benjamin J. Jones ◽  
Suresh V. Garimella

The effect of surface roughness on the pool boiling of water is studied. Five aluminum surfaces of varying roughness were prepared: one polished (0.062 μm RMS) and four roughened by electrical discharge machining (EDM) with surface roughness of 1.37, 2.81, 7.37, and 12.53 μm RMS. All experiments were performed in water at atmospheric pressure and saturation temperature. The roughest EDM surface showed up to a 100% improvement in the heat transfer coefficient compared to the polished surface. The other EDM surfaces (1.37, 2.81, and 7.37 μm) showed up to a 60% enhancement in the heat transfer coefficient compared to the polished surface. Constants are proposed for prediction of pool boiling in water from the polished and rough aluminum surfaces studied using the Rohsenow pool boiling correlation.

2009 ◽  
Vol 131 (12) ◽  
Author(s):  
Benjamin J. Jones ◽  
John P. McHale ◽  
Suresh V. Garimella

The effect of surface roughness on pool boiling heat transfer is experimentally explored over a wide range of roughness values in water and Fluorinert™ FC-77, two fluids with different thermal properties and wetting characteristics. The test surfaces ranged from a polished surface (Ra between 0.027 μm and 0.038 μm) to electrical discharge machined (EDM) surfaces with a roughness (Ra) ranging from 1.08 μm to 10.0 μm. Different trends were observed in the heat transfer coefficient with respect to the surface roughness between the two fluids on the same set of surfaces. For FC-77, the heat transfer coefficient was found to continually increase with increasing roughness. For water, on the other hand, EDM surfaces of intermediate roughness displayed similar heat transfer coefficients that were higher than for the polished surface, while the roughest surface showed the highest heat transfer coefficients. The heat transfer coefficients were more strongly influenced by surface roughness with FC-77 than with water. For FC-77, the roughest surface produced 210% higher heat transfer coefficients than the polished surface while for water, a more modest 100% enhancement was measured between the same set of surfaces. Although the results highlight the inadequacy of characterizing nucleate pool boiling data using Ra, the observed effect of roughness was correlated using h∝Ram as has been done in several prior studies. The experimental results were compared with predictions from several widely used correlations in the literature.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Weiyu Tang ◽  
Wei Li

Abstract An experimental investigation into heat transfer characteristics during condensation on two horizontal enhanced tubes (EHTs) was conducted. All the tested EHTs s have similar geometries with an outer diameter of 12.7 mm, and a plain tube was also tested for comparison. Investigated enhanced surfaces consist of dimples, protrusions, and grooves, which may produce more flow turbulence and enhanced the liquid drainage effect. The effects of mass fluxes and vapor quality were compared and analyzed. Test conditions were as follows: saturation temperature fixed at 45 °C, mass flux varying from 100 to 200 kg m−2 s−1, and vapor quality ranging from 0.3 to 0.8. The heat transfer coefficient was presented, and the results show that the proposed enhanced surfaces seem to have worse performance than the conventional tubes when the mass flux is less than 150 kg m−2 s−1, while one of the enhanced tubes (2EHT-1) produce an enhanced ratio of 1.03–1.14 when G = 200 kg m−2 s−1. Besides, it was found that the heat transfer coefficient increases with increasing vapor quality, which can be attributed to the increasing diffusion resistance. Mass flux seems to have little effect on the heat transfer performance of smooth tubes, while that of 1EHT increases obviously with increasing mass flux, especially for high vapor qualities.


2020 ◽  
Vol 24 (06) ◽  
pp. 115-126
Author(s):  
Mohammed Ghazi M. Kamil ◽  
◽  
Muna Sabah Kassim ◽  
Louay Abd Alazez Mahdi ◽  
◽  
...  

The heat transfer coefficient of steam condensation has a significant role in the performance of air-cooled heat exchangers. The purpose of this work is to predict the local/average local steam condensation heat transfer coefficient inside the horizontal flattened tube under vacuum conditions using numerous correlations that were developed by some researches which have been conducted under specified conditions. The results from these correlations have been compared with experimental data of Davies, therefore more investigate for the values are necessary to improve or/and validate the existing correlations. The effect of such parameters like the uniform heat flux and saturation temperature also have been studied on the local steam condensation heat transfer coefficient as the results show that the heat transfer coefficient decrease as the heat flux increase, while it increases as the steam saturated temperature increase.


Author(s):  
Rene Reyes Mazzoco

Nucleate pool boiling heat transfer increases with certain liquid mixtures and some coatings over the heater’s surface. The effects of these modifications are best measured by the relative values of the convective heat transfer coefficient that quantify the ability for transferring heat. The mechanisms that increase pool boiling heat transfer are reflected in the formation of smaller bubbles that escape away from the heater’s surface at a higher velocity, than those formed under not enhanced conditions. The bubble diameter depends on a chemical effect from the liquid composition acting at the bubble’s interface, and on the physical effect of the porous coverings to break the bubbles and to allow the resulting vapor flow. The reduction in bubble diameter in liquid mixtures comes from the action of intermolecular forces at the liquid-vapor interface similar to those associated to surfactants. Several studies have concentrated on increasing the heat transfer coefficient in pool using surfactants in concentrations close to the critical micelle concentration (cmc) of the surfactant in the liquid. The surfactants achieve the highest reduction of bubble diameter by accommodating the lowest surface of their molecules at the interface. However, the mixture of 16% ethanol in water also showed an increase in the convective heat transfer coefficient by producing the lowest size of bubbles from any other ethanol-water mixture. Surface tension and sessile drop contact angle for this mixture have a behavior similar to the cmc; therefore, the mixture effect on boiling is explained through the presence of ethanol-hydrated-states accommodated at the interface. Other liquid mixtures, containing propylene glycol, ethylene glycol, ethanol and water, with cmc behavior had been found through surface tension and sessile contact angle measurements, and showed that they increased the heat transfer coefficient. The mechanical effect that increases the heat transfer coefficient with porous coverings has been explained as the breaking of emerging bubbles at the heater’s surface and the proper handling of the resulting vapor flow away from the covering. Experiments with a mesh located at a distance half the bubble diameter, at a specific power supplied, released the bubbles from the heater before finishing its formation increasing their departure frequency. An array of layers of the same mesh produced and additional increment in the heat transfer coefficient if the array is accommodated to favor the gas flow out of the heater’s region.


Author(s):  
Nae-Hyun Kim ◽  
Wang-Kyu Oh ◽  
Jung-Ho Ham ◽  
Do-Young Kim ◽  
Tae-Ryong Shin

Convective boiling heat transfer coefficients of R-22 were obtained in a flat extruded aluminum tube with Dh = 1.41 mm. The test range covered mass flux from 100 to 600 kg/m2 s, heat flux from 5 to 15 kW/m2 and saturation temperature from 5°C to 15°C. The heat transfer coefficient curve shows a decreasing trend after a certain quality (critical quality). The critical quality decreases as the heat flux increases, and as the mass flux decreases. The early dryout at a high heat flux results in a unique ‘cross-over’ of the heat transfer coefficient curves. The heat transfer coefficient increases as the mass flux increases. At a low quality region, however, the effect of mass flux is not prominent. The heat transfer coefficient increases as the saturation temperature increases. The effect of saturation temperature, however, diminishes as the heat flux decreases. Both the Shah and the Kandlikar correlations underpredict the low mass flux and overpredict the high mass flux data.


Kerntechnik ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Zhibo Zhang ◽  
Huai-En Hsieh ◽  
Yuan Gao ◽  
Shiqi Wang ◽  
Jia Gao ◽  
...  

Abstract In this study, the pool boiling performance of oxide nanofluid was investigated, the heating surface is a 5 × 30 mm stainless steel heating surface. Three kinds of nanofluids were selected to explore their critical heat flux (CHF) and heat transfer coefficient (HTC), which were TiO2, SiO2, Al2O3. We observed that these nanofluids enhanced CHF compared to R·O water, and Al2O3 case has the most significant enhancement (up to 66.7%), furthermore, the HTC was also enhanced. The number of bubbles in nanofluid case was relatively less than that in R·O water case, but the bubbles were much larger. The heating surface was characterized and it was found that there were nano-particles deposited, and surface roughness decreased. The wettability also decreased with the increase in CHF.


Author(s):  
Gengwen Niu ◽  
Ji Li

In the present work, pool boiling on copper porous coating and polished surface are studied experimentally at atmospheric pressure to explore the characteristics and the regime of boiling. A high-speed camera (maximum frame rate 10000 fps) with attached magnifying lens allowed precise observation of the incipient nucleation of boiling on the two surfaces. The observed boiling phenomena suggest different characteristics in the wall superheat, the heat transfer coefficient, the departure diameter of the bubble and the frequency of the bubble generation on two substrates for two working medium at different input power. The results indicate that the heat transfer performance is greatly enhanced by using porous coating and nano-fluids. The heat transfer coefficient on the porous coating is three to four times of that on the polished surface. Meanwhile, the temperature at incipience of boiling on the porous coating is lower than that on the polished surface qualitatively for the same working medium. The new contribution of this work is that we combined nano-fluids and porous surface together to explore the heat transfer performance and conducted visual experiments to observe the behavior of the bubbles of this assembly in the pool boiling.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3062
Author(s):  
Robert Kaniowski ◽  
Robert Pastuszko

Boiling, as the most efficient type of convective heat transfer, is an area of interest in many fields of industry and science. Many works have focused on improving the heat transfer efficiency of boiling by altering the physical and chemical properties of surfaces by using different technological processes in their fabrication. This paper presents experimental investigations into pool boiling on enhanced surfaces with open microchannels. The material of the fabricated surface was copper. Parallel microchannels made by machining were about 0.2, 0.3, and 0.4 mm wide, 0.2 to 0.5 mm deep, and spaced with a pitch equal to twice the width of the microchannel. The experiments were carried out in water at atmospheric pressure. The experimental results obtained showed an increase in the heat flux and the heat transfer coefficient for surfaces with microchannels. The maximum (critical) heat flux was 2188 kW/m2, and the heat transfer coefficient was 392 kW/m2K. An improvement in the maximum heat flux of more than 245% and 2.5–4.9 times higher heat transfer coefficient was obtained for the heat flux range of 992–2188 kW/m2 compared to the smooth surface. Bubble formation and growth cycle in the microchannel were presented. Two static computational models were proposed to determine the bubble departure diameter.


Sign in / Sign up

Export Citation Format

Share Document