scholarly journals The Influence of Surface Roughness on Nucleate Pool Boiling Heat Transfer

2009 ◽  
Vol 131 (12) ◽  
Author(s):  
Benjamin J. Jones ◽  
John P. McHale ◽  
Suresh V. Garimella

The effect of surface roughness on pool boiling heat transfer is experimentally explored over a wide range of roughness values in water and Fluorinert™ FC-77, two fluids with different thermal properties and wetting characteristics. The test surfaces ranged from a polished surface (Ra between 0.027 μm and 0.038 μm) to electrical discharge machined (EDM) surfaces with a roughness (Ra) ranging from 1.08 μm to 10.0 μm. Different trends were observed in the heat transfer coefficient with respect to the surface roughness between the two fluids on the same set of surfaces. For FC-77, the heat transfer coefficient was found to continually increase with increasing roughness. For water, on the other hand, EDM surfaces of intermediate roughness displayed similar heat transfer coefficients that were higher than for the polished surface, while the roughest surface showed the highest heat transfer coefficients. The heat transfer coefficients were more strongly influenced by surface roughness with FC-77 than with water. For FC-77, the roughest surface produced 210% higher heat transfer coefficients than the polished surface while for water, a more modest 100% enhancement was measured between the same set of surfaces. Although the results highlight the inadequacy of characterizing nucleate pool boiling data using Ra, the observed effect of roughness was correlated using h∝Ram as has been done in several prior studies. The experimental results were compared with predictions from several widely used correlations in the literature.

1966 ◽  
Vol 88 (1) ◽  
pp. 17-23 ◽  
Author(s):  
C. A. Heath ◽  
C. P. Costello

Ethanol, pentane, and Freon-113 were tested for atmospheric pressure, saturated film-boiling characteristics. Turbulent waves arise close to the bottom of vertical platinum plates and the data become identical to those obtained with horizontal plates, verifying an earlier contention by Y. P. Chang. The equation of Berenson fits the data for both horizontal and vertical heaters fairly well if modified for geometry, and the equation also correctly predicts the effect of acceleration on film-boiling heat-transfer coefficients. At high temperature differences, Berenson’s equation for the heat-transfer coefficient is slightly conservative, which is qualitatively predictable by analyzing the departures of the actual system from the idealized model of Berenson.


Author(s):  
Eiji Hihara ◽  
Chaobin Dang

In this study, boiling heat transfer coefficients of carbon dioxide in horizontally located smooth tubes were experimentally investigated. The inner diameter of heat transfer tubes was 1, 2, 4, and 6 mm. Experiments were conducted at evaporating temperature of 5 and 15 °C, heat fluxes from 4.5 to 36 kW/m2, and mass fluxes from 360 to 1440 kg/m2s. The heat transfer coefficients in the pre-dryout region and post-dryout region were investigated, as well as the dryout quality. Due to the small viscosity and surface tension of CO2, the dryout occurs at a small quality from 0.4 to 0.7. The inception quality decreases with the increase of mass flux, and is affected by the heat flux and tube diameter; the effects of heat flux on the heat transfer coefficient are much significant in the pre-dryout region, which is related with the activation of nucleate boiling. On the contrary, the effects of mass flux are relatively low due to the low two-phase density ratio near the critical point. In addition, this tendency becomes more significant when the small tube is tested; In the post-dryout region, mass velocity is the dominating factor on heat transfer coefficient. At small mass flux, the heat transfer coefficient decreases with the increase of quality, while at large mass flux such as 1440kg/m2s, the heat transfer coefficient turns to increasing with the quality. By increasing the evaporating temperature, the pre-dryout heat transfer coefficient increases, while the dryout inception quality and post-dryout heat transfer coefficient are not affected greatly by the evaporating temperature.


Author(s):  
Benjamin J. Jones ◽  
Suresh V. Garimella

The effect of surface roughness on the pool boiling of water is studied. Five aluminum surfaces of varying roughness were prepared: one polished (0.062 μm RMS) and four roughened by electrical discharge machining (EDM) with surface roughness of 1.37, 2.81, 7.37, and 12.53 μm RMS. All experiments were performed in water at atmospheric pressure and saturation temperature. The roughest EDM surface showed up to a 100% improvement in the heat transfer coefficient compared to the polished surface. The other EDM surfaces (1.37, 2.81, and 7.37 μm) showed up to a 60% enhancement in the heat transfer coefficient compared to the polished surface. Constants are proposed for prediction of pool boiling in water from the polished and rough aluminum surfaces studied using the Rohsenow pool boiling correlation.


Author(s):  
Ann-Christin Fleer ◽  
Markus Richter ◽  
Roland Span

AbstractInvestigations of flow boiling in highly viscous fluids show that heat transfer mechanisms in such fluids are different from those in fluids of low viscosity like refrigerants or water. To gain a better understanding, a modified standard apparatus was developed; it was specifically designed for fluids of high viscosity up to 1000 Pa∙s and enables heat transfer measurements with a single horizontal test tube over a wide range of heat fluxes. Here, we present measurements of the heat transfer coefficient at pool boiling conditions in highly viscous binary mixtures of three different polydimethylsiloxanes (PDMS) and n-pentane, which is the volatile component in the mixture. Systematic measurements were carried out to investigate pool boiling in mixtures with a focus on the temperature, the viscosity of the non-volatile component and the fraction of the volatile component on the heat transfer coefficient. Furthermore, copper test tubes with polished and sanded surfaces were used to evaluate the influence of the surface structure on the heat transfer coefficient. The results show that viscosity and composition of the mixture have the strongest effect on the heat transfer coefficient in highly viscous mixtures, whereby the viscosity of the mixture depends on the base viscosity of the used PDMS, on the concentration of n-pentane in the mixture, and on the temperature. For nucleate boiling, the influence of the surface structure of the test tube is less pronounced than observed in boiling experiments with pure fluids of low viscosity, but the relative enhancement of the heat transfer coefficient is still significant. In particular for mixtures with high concentrations of the volatile component and at high pool temperature, heat transfer coefficients increase with heat flux until they reach a maximum. At further increased heat fluxes the heat transfer coefficients decrease again. Observed temperature differences between heating surface and pool are much larger than for boiling fluids with low viscosity. Temperature differences up to 137 K (for a mixture containing 5% n-pentane by mass at a heat flux of 13.6 kW/m2) were measured.


2017 ◽  
Vol 139 (10) ◽  
Author(s):  
Jinsub Kim ◽  
Seongchul Jun ◽  
Jungho Lee ◽  
Juan Godinez ◽  
Seung M. You

The effect of surface roughness on the pool boiling heat transfer of water was investigated on superhydrophilic aluminum surfaces. The formation of nanoscale protrusions on the aluminum surface was confirmed after immersing it in boiling water, which modified surface wettability to form a superhydrophilic surface. The effect of surface roughness was examined at different average roughness (Ra) values ranging from 0.11 to 2.93 μm. The boiling heat transfer coefficients increased with an increase in roughness owing to the increased number of cavities. However, the superhydrophilic aluminum surfaces exhibited degradation of the heat transfer coefficients when compared with copper surfaces owing to the flooding of promising cavities. The superhydrophilic aluminum surfaces exhibited a higher critical heat flux (CHF) than the copper surfaces. The CHF was 1650 kW/m2 for Ra = 0.11 μm, and it increased to 2150 kW/m2 for Ra = 0.35 μm. Surface roughness is considered to affect CHF as it improves the capillary wicking on the superhydrophilic surface. However, further increase in surface roughness above 0.35 μm did not augment the CHF, even at Ra = 2.93 μm. This upper limit of the CHF appears to result from the hydrodynamic limit on the superhydrophilic surface, because the roughest surface with Ra = 2.93 μm still showed a faster liquid spreading speed.


1997 ◽  
Vol 119 (1) ◽  
pp. 142-151 ◽  
Author(s):  
Shou-Shing Hsieh ◽  
Chun-Jen Weng

Measurements of pool-boiling heat transfer coefficients in distilled water and R-134a/oil mixtures with up to 10 percent (by weight) miscible EMKARATE RL refrigeration lubricant oil are extensively studied for a smooth tube and four rib-roughened tubes (rib pitch 39.4 mm, rib height 4 mm, rib width 15 mm, number of rib element 8, rib angle 30 deg–90 deg). Boiling data of pure refrigerants and oil mixtures, as well as the influences of heat flux level on heat transfer coefficient, are presented and discussed. A correlation is developed for predicting the heat transfer coefficient for both pure refrigerants and refrigerant-oil mixtures. Moreover, boiling visualizations were made to broaden our fundamental understanding of the pool boiling heat transfer mechanism for rib roughened surfaces with pure refrigerants and refrigerant-oil mixtures.


1997 ◽  
Vol 119 (2) ◽  
pp. 381-389 ◽  
Author(s):  
M. E. Taslim ◽  
C. M. Wadsworth

Turbine blade cooling, a common practice in modern aircraft engines, is accomplished, among other methods, by passing the cooling air through an often serpentine passage in the core of the blade. Furthermore, to enhance the heat transfer coefficient, these passages are roughened with rib-shaped turbulence promoters (turbulators). Considerable data are available on the heat transfer coefficient on the passage surface between the ribs. However, the heat transfer coefficients on the surface of the ribs themselves have not been investigated to the same extent. In small aircraft engines with small cooling passages and relatively large ribs, the rib surfaces comprise a large portion of the passage heat transfer area. Therefore, an accurate account of the heat transfer coefficient on the rib surfaces is critical in the overall design of the blade cooling system. The objective of this experimental investigation was to conduct a series of 13 tests to measure the rib surface-averaged heat transfer coefficient, hrib, in a square duct roughened with staggered 90 deg ribs. To investigate the effects that blockage ratio, e/Dh and pitch-to-height ratio, S/e, have on hrib and passage friction factor, three rib geometries corresponding to blockage ratios of 0.133, 0.167, and 0.25 were tested for pitch-to-height ratios of 5, 7, 8.5, and 10. Comparisons were made between the rib average heat transfer coefficient and that on the wall surface between two ribs, hfloor, reported previously. Heat transfer coefficients of the upstream-most rib and that of a typical rib located in the middle of the rib-roughened region of the passage wall were also compared. It is concluded that: 1 The rib average heat transfer coefficient is much higher than that for the area between the ribs; 2 similar to the heat transfer coefficient on the surface between the ribs, the average rib heat transfer coefficient increases with the blockage ratio; 3 a pitch-to-height ratios of 8.5 consistently produced the highest rib average heat transfer coefficients amongst all tested; 4 under otherwise identical conditions, ribs in upstream-most position produced lower heat transfer coefficients than the midchannel positions, 5 the upstream-most rib average heat transfer coefficients decreased with the blockage ratio; and 6 thermal performance decreased with increased blockage ratio. While a pitch-to-height ratio of 8.5 and 10 had the highest thermal performance for the smallest rib geometry, thermal performance of high blockage ribs did not change significantly with the pitch-to-height ratio.


1965 ◽  
Vol 13 (2) ◽  
pp. 153 ◽  
Author(s):  
GI Pearman

An account is given of techniques and methods used in measurement of convective heat transfer from leaves of the succulent Carpobrotus. Heat transfer was studied under still air conditions and in wind (in a specially constructed wind-tunnel) up to velocities of 300 cm sec-1. A correlation was demonstrated between experimentally obtained values of heat transfer coefficients and theoretical values calculated from empirical formulae. At wind velocities of 300 cm sec-1 the heat transfer coefficient for Carpobrotus was increased to seven times its value still air.


Author(s):  
Michael Gritsch ◽  
Stefan Baldauf ◽  
Moritz Martiny ◽  
Achmed Schulz ◽  
Sigmar Wittig

The present paper reports on the use of the superposition approach in high density ratio film cooling flows. It arises from the linearity and homogeneity of the simplified boundary layer differential equations. However, it is widely assumed that the linearity does not hold for variable property flows. Therefore, theoretical considerations and numerical calculations will demonstrate the linearity of the heat transfer coefficient with the dimensionless coolant temperature θ as long as identical flow conditions are applied. This makes it necessary to perform at least two experiments at different θ but with the coolant to main flow temperature ratio kept unchanged. A comprehensive set of experiments is presented to demonstrate the capability of the superposition approach for determining heat transfer coefficients for different film cooling geometries. These comprise coolant injection from two dimensional tangential slots, single holes, and rows of cylindrical holes. Particularly, two dimensional local distributions of the heat transfer coefficient will be addressed.


Author(s):  
Michael Ngadi ◽  
Julian N. Ikediala

Average heat transfer coefficients of chicken drum shaped bodies were estimated using aluminum chicken drum shaped models. Three model drum sizes namely small, medium and large, and three frying oil viscosities for three temperature differences were used. Estimated heat transfer coefficients were in the range from 67 to 163 W/m²K. Increasing temperature difference increased heat transfer coefficient. Conversely, increasing the size of the chicken drum model bodies and oil viscosities decreased the heat transfer coefficient. A heat transfer correlation equation between average Nu and Ra was derived. The methodology developed in this study could be used to estimate heat transfer coefficients of chicken drum during deep-fat frying.


Sign in / Sign up

Export Citation Format

Share Document