SLMB Modeling of the Full Spectrum Cumulative k-Distribution of H2O

Author(s):  
Fre´de´ric Andre´ ◽  
Rodolphe Vaillon

Radiative heat transfer is significant in many applications involving energy exchanges in gaseous media, such as combustion in engines or furnaces, atmospheric heat balances,.. The Line-By-Line (LBL) approach is the most reliable technique to determine the radiative properties of gases but is rarely used in radiative transfer simulations due to the associated prohibitive computational requirements. Approximate models are favored for such calculations. A comprehensive description of these existing methodologies can be found in Refs. [1, 2].

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Gautham Krishnamoorthy ◽  
Caitlyn Wolf

This study assesses the required fidelities in modeling particle radiative properties and particle size distributions (PSDs) of combusting particles in Computational Fluid Dynamics (CFD) investigations of radiative heat transfer during oxy-combustion of coal and biomass blends. Simulations of air and oxy-combustion of coal/biomass blends in a 0.5 MW combustion test facility were carried out and compared against recent measurements of incident radiative fluxes. The prediction variations to the combusting particle radiative properties, particle swelling during devolatilization, scattering phase function, biomass devolatilization models, and the resolution (diameter intervals) employed in the fuel PSD were assessed. While the wall incident radiative flux predictions compared reasonably well with the experimental measurements, accounting for the variations in the fuel, char and ash radiative properties were deemed to be important as they strongly influenced the incident radiative fluxes and the temperature predictions in these strongly radiating flames. In addition, particle swelling and the diameter intervals also influenced the incident radiative fluxes primarily by impacting the particle extinction coefficients. This study highlights the necessity for careful selection of particle radiative property, and diameter interval parameters and the need for fuel fragmentation models to adequately predict the fly ash PSD in CFD simulations of coal/biomass combustion.


Author(s):  
David L. Damm ◽  
Andrei G. Fedorov

Thermo-mechanical failure of components in planar-type solid oxide fuel cells (SOFCs) depends strongly on the local temperature gradients at the interfaces of different materials. Therefore, it is of paramount importance to accurately predict the temperature fields within the stack, especially near the interfaces. Because of elevated operating temperatures (of the order of 1000 K or even higher), radiation heat transfer could become a dominant mode of heat transfer in the SOFCs. In this study, we extend our recent work on radiative effects in solid oxide fuel cells (Journal of Power Sources, Vol. 124, No. 2, pp. 453–458) by accounting for the spectral dependence of the radiative properties of the electrolyte material. The measurements of spectral radiative properties of the polycrystalline yttria-stabilized zirconia (YSZ) electrolyte we performed indicate that an optically thin approximation can be used for treatment of radiative heat transfer. To this end, the Schuster-Schwartzchild two-flux approximation is used to solve the radiative transfer equation (RTE) for the spectral radiative heat flux, which is then integrated over the entire spectrum using an N-band approximation to obtain the total heat flux due to thermal radiation. The divergence of the total radiative heat flux is then incorporated as a heat sink into a 3-D thermo-fluid model of a SOFC through the user-defined function utility in the commercial FLUENT CFD software. The results of sample calculations are reported and compared against the baseline cases when no radiation effects are included and when the spectrally gray approximation is used for treatment of radiative heat transfer.


Author(s):  
Kevin Torres Monclard ◽  
Olivier Gicquel ◽  
Ronan Vicquelin

Abstract The effect of soot radiation modeling, pressure, and level of soot volume fraction are investigated in two ethylene-air turbulent flames: a jet flame at atmospheric pressure studied at Sandia, and a confined pressurized flame studied at DLR. Both cases have previously been computed with large-eddy simulations coupled with thermal radiation. The present study aims at determining and analyzing the thermal radiation field for different models from these numerical results. A Monte-Carlo solver based on the Emission Reciprocity Method is used to solve the radiative transfer equation with detailed gas and soot properties in both configurations. The participating gases properties are described by an accurate narrowband ck model. Emission, absorption, and scattering from soot particles are accounted for. Two formulations of the soot refractive index are considered: a constant value and a wavelength formulation dependency. This is combined with different models for soot radiative properties: gray, Rayleigh theory, Rayleigh-Debye-Gans theory for fractal aggregates. The effects of soot radiative scattering is often neglected since their contribution is expected to be small. This contribution is determined quantitatively in different scenarios, showing great sensitivity to the soot particles morphology. For the same soot volume fraction, scattering from larger aggregates is found to modify the radiative heat transfer noticeably. Such a finding outlines the need for detailed information on soot particles. Finally, the role of soot volume fraction and pressure on radiative interactions between both solid and gaseous phases is investigated.


2005 ◽  
Vol 2 (4) ◽  
pp. 258-262 ◽  
Author(s):  
David L. Damm ◽  
Andrei G. Fedorov

Thermo-mechanical failure of components in planar-type solid oxide fuel cells (SOFCs) depends strongly on the local temperature gradients at the interfaces of different materials. Therefore, it is of paramount importance to accurately predict the temperature fields within the stack, especially near the interfaces. Because of elevated operating temperatures (of the order of 1000K or even higher), radiation heat transfer could become a dominant mode of heat transfer in the SOFCs. In this study, we extend our recent work on radiative effects in solid oxide fuel cells [J. Power Sources, 124, No. 2, pp. 453–458] by accounting for the spectral dependence of the radiative properties of the electrolyte material. The measurements of spectral radiative properties of the polycrystalline yttria-stabilized zirconia electrolyte we performed indicate that an optically thin approximation can be used for treatment of radiative heat transfer. To this end, the Schuster–Schwartzchild two-flux approximation is used to solve the radiative transfer equation for the spectral radiative heat flux, which is then integrated over the entire spectrum using an N-band approximation to obtain the total heat flux due to thermal radiation. The divergence of the total radiative heat flux is then incorporated as a heat sink into a three-dimensional thermo-fluid model of a SOFC through the user-defined function utility in the commercial FLUENT computational fluid dynamics software. The results of sample calculations are reported and compared against the base line cases when no radiation effects are included and when the spectrally gray approximation is used for treatment of radiative heat transfer.


2008 ◽  
Author(s):  
Xiaojing Sun ◽  
Philip J. Smith

Accurate prediction of radiative heat transfer plays a key role in many high temperature applications, such as combustion devices and fires. Among various simulation methods, the Monte-Carlo Ray-Tracing (MCRT) has the advantage of solving the radiative transfer equation (RTE) for real gas mixtures with almost no approximations; however, it has disadvantage of requiring a large computational effort. The MCRT method can be carried out with either the Forward MCRT or the Reverse MCRT, depending on the direction of ray tracing. The RMCRT method has advantages over the FMCRT method in that it uses less memory, and in a domain decomposition parallelization strategy, it can explicitly obtain solutions for the domain of interest without the need for the solution on the entire domain.


2005 ◽  
Author(s):  
Liangyu Wang ◽  
Michael F. Modest

The multi-scale full-spectrum k-distribution (MSFSK) method has become a promising method for radiative heat transfer in inhomogeneous media. In this paper an original distribution scheme is proposed to extend the MSFSK’s ability in dealing with boundary wall emission. This scheme pursues the overlap concept of the MSFSK method and requires no changes in the original MSFSK formulation. A boundary emission overlap coefficient is introduced and two approaches of evaluating the coefficient are outlined. The distribution scheme is evaluated and the two approaches are compared by conducting sample calculations for radiative heat transfer in strongly inhomogeneous media using both the MSFSK method and the line-by-line method.


Sign in / Sign up

Export Citation Format

Share Document