Effect of Shroud and Baffle on Heat Transfer in a Solar Thermal Storage Tank

Author(s):  
S. K. S. Boetcher ◽  
F. A. Kulacki

Enhancing heat transfer during the charge and discharge of solar thermal storage tanks is an ongoing technical challenge. The types of thermal storage systems considered in the present study comprise an immersed heat exchanger at the top of a solar thermal storage fluid. The discharge process of a thermal store with specified dimensions is numerically simulated over a range of Rayleigh numbers, 105 < RaD <107. The immersed heat exchanger is modeled as a two-dimensional isothermal cylinder which is situated near the top of a water-filled tank with adiabatic walls. An adiabatic shroud whose shape is parametrically varied is placed around the cylinder. In addition, the shroud is connected to an adiabatic baffle situated beneath the cylinder. Nusselt numbers are calculated for different shroud shapes at different Rayleigh numbers. Results show that the shroud is effective in increasing the heat transfer rate. Optimal shroud and baffle geometries are presented as well as qualitative flow results.

2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Matthew K. Zemler ◽  
Sandra K. S. Boetcher

A shroud and baffle configuration is used to passively increase heat transfer in a thermal store. The shroud and baffle are used to create a vena contracta near the surface of the heat exchanger, which will speed up the flow locally and thereby increasing heat transfer. The goal of this study is to investigate the geometry of the shroud in optimizing heat transfer by locally increasing the velocity near the surface of the heat exchanger. Two-dimensional transient simulations are conducted. The immersed heat exchanger is modeled as an isothermal cylinder, which is situated at the top of a solar thermal storage tank containing water (Pr = 3) with adiabatic walls. The shroud and baffle are modeled as adiabatic, and the geometry of the shroud and baffle are parametrically varied. Nusselt numbers and fractional energy discharge rates are obtained for a range of Rayleigh numbers, 105 ≤ RaD ≤ 107 in order to determine optimal shroud and baffle configurations. It was found that a baffle width of 75% of the width of the heat exchanger provided the best heat transfer performance.


1992 ◽  
Vol 114 (3) ◽  
pp. 175-181 ◽  
Author(s):  
D. T. Reindl ◽  
W. A. Beckman ◽  
J. W. Mitchell

Many previously studied natural convection enclosure problems in the literature have the bounding walls of the enclosure responsible for driving the flow. A number of relevant applications contain sources within the enclosure which drive the fluid flow and heat transfer. The motivation for this work is found in solar thermal storage tanks with immersed coil heat exchangers. The heat exchangers provide a means to charge and discharge the thermal energy in the tank. The enclosure is cylindrical and well insulated. Initially the interior fluid is isothermal and quiescent. At time zero, a step change in the source temperature begins to influence the flow. The final condition is a quiescent isothermal fluid field at the source temperature. The governing time-dependent Navier-Stokes and energy equations for this configuration are solved by a finite element method. Solutions are obtained for 103≤RaD≤106. Scale analysis is used to obtain time duration estimates of three distinct heat transfer regimes. The transient heat transfer during these regimes are compared with limiting cases. Correlations are presented for the three regimes.


Author(s):  
S. K. S. Boetcher ◽  
F. A. Kulacki ◽  
Jane H. Davidson

Optimizing heat transfer during the charge and discharge of thermal stores is crucial for high performance of solar thermal systems for domestic and commercial applications. This study models a sensible water storage tank for which charge and discharge are accomplished using a heat exchanger immersed in the storage fluid. The objective is to investigate the use of a baffle and shroud as a means to improve convective heat transfer and thermal stratification. The immersed heat exchanger is modeled as a two-dimensional isothermal cylinder which is situated near the top of a storage tank with adiabatic walls. Transient numerical simulations of the discharge process are obtained for 105 < RaD < 107. An adiabatic shroud and baffle whose geometry is parametrically varied is placed around and below the cylinder. Transient Nusselt numbers are calculated for different baffle-shroud geometries and Rayleigh numbers. Results indicate that a long baffle with a high shroud height is optimal.


2020 ◽  
Vol 33 ◽  
pp. 4402-4407
Author(s):  
D. Muruganandam ◽  
J. Jayapriya ◽  
G. Ramakrishnan ◽  
G. Puthilibai ◽  
P. Karthick ◽  
...  

2005 ◽  
Vol 19 (1) ◽  
pp. 101-105 ◽  
Author(s):  
S. Vemuri ◽  
K. J. Kim ◽  
A. Razani ◽  
T. W. Bell ◽  
B. D. Wood

1993 ◽  
Vol 115 (3) ◽  
pp. 560-567 ◽  
Author(s):  
N. Zhang ◽  
J. Chiou ◽  
S. Fann ◽  
W.-J. Yang

Experiments are performed to determine the local heat transfer performance in a rotating serpentine passage with rib-roughened surfaces. The ribs are placed on the trailing and leading walls in a corresponding posited arrangement with an angle of attack of 90 deg. The rib height-to-hydraulic diameter ratio, e/Dh, is 0.0787 and the rib pitch-to-height ratio, s/e, is 11. The throughflow Reynolds number is varied, typically at 23,000, 47,000, and 70,000 in the passage both at rest and in rotation. In the rotation cases, the rotation number is varied from 0.023 to 0.0594. Results for the rib-roughened serpentine passages are compared with those of smooth ones in the literature. Comparison is also made on results for the rib-roughened passages between the stationary and rotating cases. It is disclosed that a significant enhancement is achieved in the heat transfer in both the stationary and rotating cases resulting from an installation of the ribs. Both the rotation and Rayleigh numbers play important roles in the heat transfer performance on both the trailing and leading walls. Although the Reynolds number strongly influences the Nusselt numbers in the rib-roughened passage of both the stationary and rotating cases, Nuo and Nu, respectively, it has little effect on their ratio Nu/Nuo.


2013 ◽  
Vol 448-453 ◽  
pp. 3259-3269
Author(s):  
Zhi Wei Li ◽  
Hong Zhou He ◽  
Huang Huang Zhuang

The characteristics of the external heat exchanger (EHE) for a 4 MWth circulation fluidized bed combustor were studied in the present paper. The length, width and height of EHE were 1.5 m, 0.8 m and 9 m, respectively. The circulating ash flow passing the heating surface bed could be controlled by adjusting the fluidizing air flow and the heating transferred from the circulating ash to the cooling water. The ash flow rate passing through the heat transfer bed was from 0.4 to 2.2 kg/s. The ash average temperature was from 500 to 750 °C. And the heat transfer rate between the ash and the cooling water was between 150 and 300 W/(m2·°C). The relationships among the circulating ash temperature, the heat transfer, heat transfer rate, the heat transfer coefficient and the circulating ash flow passing through the heating exchange cell were also presented and could be used for further commercial EHE design.


Sign in / Sign up

Export Citation Format

Share Document