Air-Side Performance Characterization of Air-to-Refrigerant Heat Exchangers Using Parallel Parameterized CFD

Author(s):  
Khaled Saleh ◽  
Weizhe Han ◽  
Vikrant Aute ◽  
Reinhard Radermacher

The goal of the study presented in this paper is to use Computational Fluid Dynamics (CFD) to characterize the heat transfer and friction performance of fins used in air-to-refrigerant heat exchangers. Five different types of fins used in air-cooled heat exchangers (HXs) are studied using Parallel Parameterized CFD (PPCFD) approach described in this paper. The fin types considered in this paper are; Plain, Wavy, Slit, Super Slit, and Louver. 3-D CFD models are built and tested for these fin types. Based on the CFD results, air side heat transfer coefficient (HTC), Colburn j factor, Fanning f factor, and pressure drop are calculated. The results from CFD simulations are compared against experimental data from the literature for the different fin types and a good agreement is found between the two. In addition, the results from CFD simulations are used to evaluate the thermal and hydraulic performance for a wide range of heat exchanger parameters such as tube diameters, fin pitch, number of rows, and frontal air velocity. The results show the advantages of using PPCFD to efficiently develop correlations for different types of fins used in air-cooled HX, with significant reduction in engineering time. The PPCFD approach can be extended to efficiently optimize novel heat transfer surfaces.

Fluids ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 205 ◽  
Author(s):  
Brice Rogie ◽  
Wiebke Brix Markussen ◽  
Jens Honore Walther ◽  
Martin Ryhl Kærn

The present study investigated a new microchannel profile design encompassing condensate drainage slits for improved moisture removal with use of triangular shaped plain fins. Heat transfer and pressure drop correlations were developed using computational fluid dynamics (CFD) and defined in terms of Colburn j-factor and Fanning f-factor. The microchannels were square 2.00 × 2.00 mm and placed with 4.50 mm longitudinal tube pitch. The transverse tube pitch and the triangular fin pitch were varied from 9.00 to 21.00 mm and 2.50 to 10.00 mm, respectively. Frontal velocity ranged from 1.47 to 4.40 m·s−1. The chosen evaporator geometry corresponds to evaporators for industrial refrigeration systems with long frosting periods. Furthermore, the CFD simulations covered the complete thermal entrance and developed regions, and made it possible to extract virtually infinite longitudinal heat transfer and pressure drop characteristics. The developed Colburn j-factor and Fanning f-factor correlations are able to predict the numerical results with 3.41% and 3.95% deviation, respectively.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Young-Gil Park ◽  
Anthony M. Jacobi

The air-side thermal-hydraulic performance of flat-tube aluminum heat exchangers is studied experimentally for conditions typical to air-conditioning applications, for heat exchangers constructed with serpentine louvered, wavy, and plain fins. Using a closed-loop calorimetric wind tunnel, heat transfer and pressure drop are measured at air face velocities from 0.5 m/s to 2.8 m/s for dry- and wet-surface conditions. Parametric effects related to geometry and operating conditions on heat transfer and friction performance of the heat exchangers are explored. Significant differences in the effect of geometrical parameters are found for dry and wet conditions. For the louver-fin geometry, using a combined database from the present and the previous studies, empirical curve-fits for the Colburn j- and f-factors are developed in terms of a wet-surface multiplier. The wet-surface multiplier correlations fit the present database with rms relative residuals of 21.1% and 24.4% for j and f multipliers, respectively. Alternatively, stand-alone Colburn j and f correlations give rms relative residuals of 22.7% and 29.1%, respectively.


2021 ◽  
Author(s):  
Ronald E. Vieira ◽  
Thiana A. Sedrez ◽  
Siamack A. Shirazi ◽  
Gabriel Silva

Abstract Air-water two-phase flow in circular pipes has been studied by many investigators. However, investigations of multiphase flow in non-circular pipes are still very rare. Triangular pipes have found a number of applications, such as multiphase flow conditioning, erosion mitigation in elbows, compact heat exchanges, solar heat collectors, and electronic cooling systems. This work presents a survey of air-water and air-water-sand flow through circular and triangular pipes. The main objective of this investigation is to study the potential effects of triangular pipe geometry on flow patterns, slug frequency, sand erosion in elbows, and heat transfer in multiphase flow. Firstly, twenty-three experiments were performed for horizontal air-water flow. Detailed videos and slug frequency measurements were collected through circular and triangular clear pipes to identify flow patterns and create a database for these pipe configurations. The effect of corners of the triangular pipe on the liquid distribution was investigated using two different orientations of triangular pipe: apex upward and downward and results of triangular pipes were compared to round tubes. Secondly, ultrasonic wall thickness erosion measurements, paint removal studies, and CFD simulations were carried out to investigate the erosion patterns and magnitudes for liquid-sand and liquid-gas-sand flows in circular and triangular elbows with the same radius of curvature and cross-sectional area. Thirdly, heat transfer rates for liquid flows were also simulated for both circular and triangular pipe cross-sections. Although similar flow patterns are observed in circular and triangular pipe configurations, the orientation of the triangular pipes seems to have an effect on the liquid distribution and slug frequency. For higher liquid rates, slug frequencies are consistently lower in the triangular pipe as compared to the circular pipe. Similarly, the triangular elbow offers better flow behavior as compared to circular elbows when investigated numerically with similar flow rates for erosion patterns for both liquid-sand flow and liquid-gas-sand flows. Experimental and CFD results show that erosion in the circular elbow is about three times larger than in the triangular elbow. Paint studies results validated erosion patterns and their relations with particle impacts. Finally, heat transfer to/from triangular pipes is shown to be more efficient than in circular pipes, making them attractive for compact heat exchangers and heat collectors. This paper represents a novel experimental work and CFD simulations to examine the effects of pipe geometries on multiphase flow in pipes with several practical applications. The present results will help to determine the efficiency of utilizing triangular pipes as compared to circular pipes for several important applications and field operations such as reducing slug frequencies of multiphase flow in pipes, and reducing solid particle erosion of elbows, and also increasing the efficiency of heat exchangers.


2001 ◽  
Author(s):  
Arash Saidi ◽  
Daniel Eriksson ◽  
Bengt Sundén

Abstract This paper presents a discussion and comparison of some heat exchanger types readily applicable to use as intercoolers in gas turbine systems. The present study concerns a heat duty of the intercooler for a gas turbine of around 17 MW power output. Four different types of air-water heat exchangers are considered. This selection is motivated because of the practical aspects of the problem. Each configuration is discussed and explained, regarding advantages and disadvantages. The available literature on the pressure drop and heat transfer correlations is used to determine the thermal-hydraulic performance of the various heat exchangers. Then a comparison of the intercooler core volume, weight, pressure drop is presented.


2019 ◽  
Vol 37 (2) ◽  
pp. 131-155 ◽  
Author(s):  
Willem Faes ◽  
Steven Lecompte ◽  
Zaaquib Yunus Ahmed ◽  
Johan Van Bael ◽  
Robbe Salenbien ◽  
...  

AbstractIn many industries and processes, heat exchangers are of vital importance as they are used to transfer heat from one fluid to another. These fluids can be corrosive to heat exchangers, which are usually made of metallic materials. This paper illustrates that corrosion is an important problem in the operation of heat exchangers in many environments, for which no straightforward answer exists. Corrosion failures of heat exchangers are common, and corrosion often involves high maintenance or repair costs. In this review, an overview is given of what is known on corrosion in heat exchangers. The different types of corrosion encountered in heat exchangers and the susceptible places in the devices are discussed first. This is combined with an overview of failure analyses for each type of corrosion. Next, the effect of heat transfer on corrosion and the influence of corrosion on the thermohydraulic performances are discussed. Finally, the prevention and control of corrosion is tackled. Prevention goes from general design considerations and operation guidelines to the use of cathodic and anodic protection.


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 769 ◽  
Author(s):  
Jorge Badules ◽  
Mariano Vidal ◽  
Antonio Boné ◽  
Emilio Gil ◽  
F. Javier García-Ramos

A computational fluid dynamics (CFD) model of the fluid velocities generated by the agitation system of an air-assisted sprayer was developed and validated by practical experiments in a laboratory. The model was developed considering different settings of the agitation system: Three water levels in the tank (1000, 2000, and 3000 L); two different numbers of active nozzles (2 or 4); and three working pressures of the agitation circuit (8, 10, or 12 bar). Actual measurements of the fluid velocity into the tank were taken using an acoustic Doppler velocimeter (ADV). CFD simulations made it possible to estimate fluid velocities at 38% of the measuring points with relative errors of less than 30%. Additionally, the CFD models have allowed the correct prediction of the general behavior of the fluid in the tank considering mean velocities depending on the setting parameters of the agitation system (water level in the tank, hydraulic circuit pressure, and number of active nozzles).


Inventions ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 14
Author(s):  
Messaoud Badache ◽  
Zine Aidoun ◽  
Parham Eslami-Nejad ◽  
Daniela Blessent

Compared to conventional ground heat exchangers that require a separate pump or othermechanical devices to circulate the heat transfer fluid, ground coupled thermosiphons or naturallycirculating ground heat exchangers do not require additional equipment for fluid circulation in theloop. This might lead to a better overall efficiency and much simpler operation. This paper providesa review of the current published literature on the different types of existing ground coupledthermosiphons for use in applications requiring moderate and low temperatures. Effort has beenfocused on their classification according to type, configurations, major designs, and chronologicalyear of apparition. Important technological findings and characteristics are provided in summarytables. Advances are identified in terms of the latest device developments and innovative conceptsof thermosiphon technology used for the heat transfer to and from the soil. Applications arepresented in a novel, well-defined classification in which major ground coupled thermosiphonapplications are categorized in terms of medium and low temperature technologies. Finally,performance evaluation is meticulously discussed in terms of modeling, simulations, parametric,and experimental studies.


2008 ◽  
Vol 130 (11) ◽  
Author(s):  
Yinhai Zhu ◽  
Yanzhong Li

In this paper, four basic fins of the plate-fin heat exchangers, rectangular plain fin, strip offset fin, perforated fin, and wavy fin, are modeled and simulated by taking account of fin thickness, thermal entry effect, and end effect. Three-dimensional numerical simulations on the flow and heat transfer in the four fins are investigated and carried out at laminar flow regime. Validity of the modeling technique is verified by comparing computational results with both corresponding experimental data and three empirical correlations from literatures. Global average Colburn factor (j factor) and friction factor (f factor) and their local 1D streamwise-average distributions along the fins are presented by introducing data reduction method. The heat transfer behaviors in both the developing and developed regions are analyzed by examining variations of the local Nusselt number along the flow direction. It is found that the thermal entry length of the four fins might be expressed in the format of Le=c1 Rec2 Pr Dh, which has the same form as the one in a circular tube.


Sign in / Sign up

Export Citation Format

Share Document