The Impact of Fin Deformation on Condensation Heat Transfer Coefficients in Internally Grooved Tubes

Author(s):  
Sunil Mehendale

In HVACR equipment, internally enhanced round tube (microfin) designs such as axial, cross-grooved, helical, and herringbone are commonly used to enhance the boiling and condensing performance of evaporators, condensers, and heat pumps. Typically, such tubes are mechanically expanded by a mandrel into a fin pack to create an interference fit between the tube outside surface and the fin collar to minimize the thermal contact resistance between tube and fin. However, during this expansion process, the internal enhancements undergo varying amounts of deformation, which degrades the in-tube thermal performance. Extensive data on condensing heat transfer coefficients in microfin tubes have been reported in the open literature. However, researchers have seldom used expanded tubes to acquire and report such data. Hence, it is always questionable to use such pristine tube data for designing heat exchangers and HVACR systems. Furthermore, the HVACR industry has been experiencing steeply rising copper costs, and this trend is expected to continue in coming years. So, many equipment manufacturers and suppliers are actively converting tubes from copper to aluminum. However, because of appreciable differences between the material properties of aluminum and copper, as well as other manufacturing variables, such as mandrel dimensions, lubricant used, etc., tube expansion typically deforms aluminum fins more than copper fins. Based on an analysis of the surface area changes arising from tube expansion, and an assessment of the best extant in-tube condensation heat transfer correlations, this work proposes a method of estimating the impact of tube expansion on in-tube condensation heat transfer. The analysis leads to certain interesting and useful findings correlating fin geometry and in-tube condensation thermal resistance. This method can then be applied to more realistically design HVACR heat exchangers and systems.

Author(s):  
Zhen Zhang ◽  
Yoav Peles ◽  
Michael K. Jensen

To improve condensation heat transfer performance in a variety of systems, reduced channel sizes are used. However, few studies have been performed on complete heat exchangers. Hence, condensation heat transfer coefficients were studied experimentally in two ultracompact heat exchangers with a hydraulic diameter of 133 μm using steam as the working fluid. Effects of mass flux, average vapor quality, saturation pressure, and heat exchanger size were examined. The condensation heat transfer coefficients showed strong influence of mass flux and quality. However, the effects of saturation pressure and heat exchange size were not significant. Three conventional and three mini/microscale correlations were compared with the experimental data. The conventional and mini/microscale correlations developed for annular flow overpredict the data significantly. The Soliman correlation developed for mist flow showed the best agreement with the data.


1999 ◽  
Vol 122 (1) ◽  
pp. 186-188 ◽  
Author(s):  
J. P. Meyer ◽  
J. M. Bukasa ◽  
S. A. Kebonte

Average boiling and condensation heat transfer coefficients were determined experimentally for a coaxial tube-in-tube heat exchanger used in hot water heat pumps. During manufacturing, the heat exchanger geometry used for the experiments changed from round tubes to elliptical tubes as no spacers were used to keep the inner tube from touching the outer tube. The refrigerant used was two different mixtures of R22 with R142b in mass ratios of 80 percent/20 percent and 60 percent/40 percent. The results were compared to theoretical results for straight tubes. It was concluded that the theoretical modes do not predict the heat transfer coefficients very well in coaxial tube-in-tube heat exchangers where the annulus touches the inside of the outer tube. [S0022-1481(00)01001-X]


2004 ◽  
Vol 11 (03) ◽  
pp. 291-306 ◽  
Author(s):  
J. M. Burzler ◽  
S. A. Amelkin ◽  
A. M. Tsirlin ◽  
K. H. Hoffmann

The optimal allocation of a given investment capital to the heat exchanging inventory is studied for heat engines, refrigerators and heat pumps. The study is based on an endoreversible model operating between two constant temperature heat reservoirs at optimal thermodynamic performance, which is either minimal entropy production or maximum power production. The analysis accounts for the fact that the actual costs of heat exchangers equipment is subject to the material, design and operating conditions of the heat exchangers so that the dependence between the costs and heat transfer coefficients generally needs to be considered as nonlinear and different for the hot and cold side of the system. Contrary to existing results showing no difference between cyclic and stationary operation for Newtonian heat transfer we find one. This result also pertains to non-Newtonian heat transfer.


2006 ◽  
Vol 128 (10) ◽  
pp. 1050-1059 ◽  
Author(s):  
Todd M. Bandhauer ◽  
Akhil Agarwal ◽  
Srinivas Garimella

A model for predicting heat transfer during condensation of refrigerant R134a in horizontal microchannels is presented. The thermal amplification technique is used to measure condensation heat transfer coefficients accurately over small increments of refrigerant quality across the vapor-liquid dome (0<x<1). A combination of a high flow rate closed loop primary coolant and a low flow rate open loop secondary coolant ensures the accurate measurement of the small heat duties in these microchannels and the deduction of condensation heat transfer coefficients from measured UA values. Measurements were conducted for three circular microchannels (0.506<Dh<1.524mm) over the mass flux range 150<G<750kg∕m2s. Results from previous work by the authors on condensation flow mechanisms in microchannel geometries were used to interpret the results based on the applicable flow regimes. The heat transfer model is based on the approach originally developed by Traviss, D. P., Rohsenow, W. M., and Baron, A. B., 1973, “Forced-Convection Condensation Inside Tubes: A Heat Transfer Equation For Condenser Design,” ASHRAE Trans., 79(1), pp. 157–165 and Moser, K. W., Webb, R. L., and Na, B., 1998, “A New Equivalent Reynolds Number Model for Condensation in Smooth Tubes,” ASME, J. Heat Transfer, 120(2), pp. 410–417. The multiple-flow-regime model of Garimella, S., Agarwal, A., and Killion, J. D., 2005, “Condensation Pressure Drop in Circular Microchannels,” Heat Transfer Eng., 26(3), pp. 1–8 for predicting condensation pressure drops in microchannels is used to predict the pertinent interfacial shear stresses required in this heat transfer model. The resulting heat transfer model predicts 86% of the data within ±20%.


Author(s):  
G P Voller ◽  
M Tirovic ◽  
R Morris ◽  
P Gibbens

The aim of this investigation was to study automotive disc brake cooling characteristics experimentally using a specially developed spin rig and numerically using finite element (FE) and computational fluid dynamics (CFD) methods. All three modes of heat transfer (conduction, convection and radiation) have been analysed along with the design features of the brake assembly and their interfaces. The spin rig proved to be very valuable equipment; experiments enabled the determination of the thermal contact resistance between the disc and wheel carrier. The analyses demonstrated the sensitivity of this mode of heat transfer to clamping pressure. For convective cooling, heat transfer coefficients were measured and very similar results were obtained from spin rig experiments and CFD analyses. The nature of radiative heat dissipation implies substantial e ects at high temperatures. The results indicate substantial change of emissivity throughout the brake application. The influence of brake cooling parameters on the disc temperature has been investigated by FE modelling of a long drag brake application. The thermal power dissipated during the drag brake application has been analysed to reveal the contribution of each mode of heat transfer.


Author(s):  
Wenhai Li ◽  
Ken Alabi ◽  
Foluso Ladeinde

Over the years, empirical correlations have been developed for predicting saturated flow boiling [1–15] and condensation [16–30] heat transfer coefficients inside horizontal/vertical tubes or micro-channels. In the present work, we have examined 30 of these models, and modified many of them for use in compact plate-fin heat exchangers. However, the various correlations, which have been developed for pipes and ducts, have been modified in our work to make them applicable to extended fin surfaces. The various correlations have been used in a low-order, one-dimensional, finite-volume type numerical integration of the flow and heat transfer equations in heat exchangers. The NIST’s REFPROP database [31] is used to account for the large variations in the fluid thermo-physical properties during phase change. The numerical results are compared with Yara’s experimental data [32]. The validity of the various boiling and condensation models for a real plate-fin heat exchanger design is discussed. The results show that some of the modified boiling and condensation correlations can provide acceptable prediction of heat transfer coefficient for two-phase flows in compact plate-fin heat exchangers.


2000 ◽  
Author(s):  
Qiao Lin ◽  
Shuyun Wu ◽  
Yin Yuen ◽  
Yu-Chong Tai ◽  
Chin-Ming Ho

Abstract This paper presents an experimental investigation on MEMS impinging jets as applied to micro heat exchangers. We have fabricated MEMS single and array jet nozzles using DRIE technology, as well as a MEMS quartz chip providing a simulated hot surface for jet impingement. The quartz chip, with an integrated polysilicon thin-film heater and distributed temperature sensors, offers high spatial resolution in temperature measurement due to the low thermal conductivity of quartz. From measured temperature distributions, heat transfer coefficients are computed for single and array micro impinging jets using finite element analysis. The results from this study for the first time provide extensive data on spatial distributions of micro impinging-jet heat transfer coefficients, and demonstrate the viability of MEMS heat exchangers that use micro impinging jets.


Sign in / Sign up

Export Citation Format

Share Document