Convective Heat Transfer of Ethanol/Polyalphaolefin Nanoemulsion Inside Circular Minichannel Heat Exchanger

Author(s):  
Fana Zewede ◽  
Henok Argaw ◽  
Thanh Tran ◽  
Jiajun Xu

This work experimentally studied the convective heat transfer characteristics of a novel nanostructured heat transfer fluid: “Ethanol/Polyalphaolefin(PAO) nanoemulsion fluids” flowing through a heat exchanger made of twelve circular minichannels. Ethanol/PAO nanoemulsion fluid is a thermodynamically stable system formed by dispersing ethanol into a mixture of PAO and surfactants, in which the ethanol added inside forms self-assembled nanodroplets of tens of nanometers in diameter. These ethanol nanodroplets can serve as pre-seed boiling nuclei at elevated temperature. The Reynolds number was varied between 140 and 1200 to maintain the entire range of flow regime remained at laminar flow for both single- and two-phase convective heat transfer experiments. Pure PAO was also tested under same conditions and used as baseline data for comparison. It is found that: for single phase flow, there is no significant increase in Nusselt number of Ethanol/PAO nanoemulsion compared to that of PAO fluid in laminar flow regime. However, when the nucleation of ethanol nanodroplets inside the nanoemulsion fluid was initiated, it showed a substantial increase in heat transfer coefficient compared to that of PAO fluid: a 75% enhancement can be achieved under current test conditions. While its mechanism is not completely clear yet, it is believed that such an effect is likely related to the latent heat carried by ethanol bubbles, as well as the increased turbulence and mixing generated during the two-phase flow of nanoemulsion which can increase the heat transfer rate.

2021 ◽  
Author(s):  
Jaime Rios ◽  
Mehdi Kabirnajafi ◽  
Takele Gameda ◽  
Raid Mohammed ◽  
Jiajun Xu

The present study experimentally and numerically investigates the flow and heat transfer characteristics of a novel nanostructured heat transfer fluid, namely, ethanol/polyalphaolefin nanoemulsion, inside a conventionally manufactured minichannel of circular cross section and a microchannel heat exchanger of rectangular cross section manufactured additively using the Direct Metal Laser Sintering (DMLS) process. The experiments were conducted for single-phase flow of pure polyalphaolefin (PAO) and ethanol/PAO nanoemulsion fluids with two ethanol concentrations of 4 wt% and 8 wt% as well as for two-phase flow boiling of nanoemulsion fluids to study the effect of ethanol nanodroplets on the convective flow and heat transfer characteristics. Furthermore, the effects of flow regime of the working fluids on the heat transfer performance for both the minichannel and microchannel heat exchangers were examined within the laminar and transitional flow regimes. It was found that the ethanol/PAO nanoemulsion fluids can improve convective heat transfer compared to that of the pure PAO base fluid under both single- and two-phase flow regimes. While the concentration of nanoemulsion fluids did not reflect a remarkable distinction in single-phase heat transfer performance within the laminar regime, a significant heat transfer enhancement was observed using the nanoemulsion fluids upon entering the transitional flow regime. The heat transfer enhancement at higher concentrations of nanoemulsion within the transitional regime is mainly attributed to the enhanced interaction and interfacial thermal transport between ethanol nanodroplets and PAO base fluid. For two-phase flow boiling, heat transfer coefficients of ethanol/PAO nanoemulsion fluids were further enhanced when the ethanol nanodroplets underwent phase change. A comparative study on the flow and heat transfer characteristics was also implemented between the traditionally fabricated minichannel and additively manufactured microchannel of similar dimensions using the same working fluid of pure PAO and the same operating conditions. The results revealed that although the DMLS fabricated microchannel posed a higher pressure loss, a substantial heat transfer enhancement was achieved as compared to the minichannel heat exchanger tested under the same conditions. The non-post processed surface of the DMLS manufactured microchannel is likely to be the main contributor to the augmented heat transfer performance. Further studies are required to fully appreciate the possible mechanisms behind this phenomenon as well as the convective heat transfer properties of nanoemulsion fluids.


Author(s):  
Kyo Sik Hwang ◽  
Hyo Jun Ha ◽  
Seung Hyun Lee ◽  
Hyun Jin Kim ◽  
Seok Pil Jang ◽  
...  

This paper is to investigate flow and convective heat transfer characteristics of nanofluids with various shapes of Al2O3 nanoparticles flowing through a uniformly heated circular tube under fully developed laminar flow regime. For the purpose, Al2O3 nanofluids of 0.3 Vol.% with sphere, rod, platelet, blade and brick shapes are manufactured by a two-step method. Zeta potential as well as TEM image is experimentally obtained to examine suspension and dispersion characteristics of Al2O3 nanofluids with various shapes. To investigate flow characteristics, the pressure drop of Al2O3 nanofluids with various shapes are measured. In order to investigate convective heat transfer characteristics, the effective thermal conductivities of Al2O3 nanofluids with various shapes, the temperature distribution at the tube surface and the mean temperature of nanofluids at the inlet are measured, respectively. Based on the experimental results, the convective heat transfer coefficient of Al2O3 nanofluids with various shapes is compared with that of pure water and the thermal conductivity of Al2O3 nanofluids with various shapes. Thus, the effect of nanoparticles shape on the flow and convective heat transfer characteristics flowing through a uniformly heated circular tube under fully developed laminar flow regime is experimentally investigated.


1985 ◽  
Vol 107 (3) ◽  
pp. 596-602 ◽  
Author(s):  
V. Prasad ◽  
F. A. Kulacki

An experimental study of convective heat transfer in liquid-filled vertical annulus of radius ratio κ = 5.338 has been conducted for the height-to-gap width ratio A = 0.5, 1, and 1.5. By using water, heptane, and ethylene glycol as the test fluids, a Rayleigh number range of 8 × 106 < Ra < 3 × 1010, and a Prandtl number range of 4 < Pr < 196 have been covered. Curvature effects on the temperature field are significant and result in a lower effective sink temperature for the boundary layer on the isothermally heated inner wall. The Nusselt number Nu thus increases with radius ratio κ. However, the slope of ln (Nu) versus ln (κ) curve is not a constant, and decreases with an increase in κ. The effect of Prandtl number is weak. In the laminar flow regime, the Nusselt number is weakly dependent on the aspect ratio when Nu and Ra are considered in terms of the annulus height L. The start of laminar flow regime is delayed with an increase in radius ratio. For A = 0.5, κ = 5.338, the critical Grashof number is GrL = 7 × 104, which decreases with an increase in A. Turbulence is initiated when the local Grashof number Grx ≃ 4 × 109.


2012 ◽  
Vol 22 (3) ◽  
pp. 185-205
Author(s):  
Ludovic Osmar ◽  
S. Vincent ◽  
J.-P. Caltagirone ◽  
David Reungoat ◽  
G. Mermaz-Rollet

Sign in / Sign up

Export Citation Format

Share Document