Size Distribution of Diesel Particulate Matter From a Heavy Duty Diesel Engine During FTP Transient Cycle

Author(s):  
Emre Tatli ◽  
Nigel N. Clark ◽  
Richard J. Atkinson ◽  
Gregory J. Thompson

Researchers concerned both with diesel exhaust health effects and with mechanisms of particulate matter (PM) formation have an interest in gaining understanding of PM size distributions from heavy-duty on-road diesel engines. Prior research has been done on particulate size measurement but the results fall short in understanding PM size distributions because of the response time or size range of the instruments used. This study reports the transient size distributions of PM from a 1992 Detroit Diesel Series 60 on an engine dynamometer from a full flow dilution tunnel for a FTP Transient Cycle using a Cambustion ® Differential Mobility spectrometer (DMS 500). The size bins selected for this study for the nucleation and accumulation modes were 20nm and 60nm bins, respectively. The accumulation mode during the accelerations and the nucleation mode during the decelerations were clearly observed from the distributions with respect to time. Distributions were also observed during the test cycle showing the transition between the two modes. From the results obtained from the analysis, no strong correlation between the 60nm particles and engine speed was observed even though higher counts of accumulation particles were observed at the same time that the vehicle activity occurred. Similarly, there was no correlation between the accumulation mode particles and power. When the distributions of nucleation and accumulation mode particles were plotted against each other, there was no correlation or anti-correlation. The average size distributions were also analyzed during the four periods of the FTP Transient cycle and the highest counts were observed during the Los Angeles Freeway (LAF) period. Also, higher counts at the second New York Non Freeway (NYNF) were observed during the cycle.

1994 ◽  
Author(s):  
C. J. J. Den Ouden ◽  
R. H. Clark ◽  
L. T. Cowley ◽  
R. J. Stradling ◽  
W. W. Lange ◽  
...  

2007 ◽  
Author(s):  
Yuebin Wu ◽  
Nigel Clark ◽  
Daniel Carder ◽  
Gregory J. Thompson ◽  
Mridul Gautam ◽  
...  

2004 ◽  
Vol 38 (5) ◽  
pp. 1296-1304 ◽  
Author(s):  
Philip M Fine ◽  
Bhabesh Chakrabarti ◽  
Meg Krudysz ◽  
James J. Schauer ◽  
Constantinos Sioutas

Author(s):  
G Fernandes ◽  
J Fuschetto ◽  
Z Filipi ◽  
D Assanis ◽  
H McKee

Investigating the impact of jet fuel on diesel engine performance and emissions is very important for military vehicles, due to the US Army Single Fuel Forward Policy mandating that deployed vehicles must refuel with aviation fuel JP-8. There is a known torque and fuel economy penalty associated with the operation of a diesel engine with JP-8 fuel, due to its lower density and viscosity. On the other hand, a few experimental studies have suggested that kerosene-based fuels have the potential for lowering exhaust emissions, especially particulate matter, compared to diesel fuel #2 (DF-2). However, studies so far have typically focused on quantifying the effects of simply replacing the regular DF-2 with JP-8, rather than fully investigating the reasons behind the observed differences. This research evaluates the effect of using JP-8 fuel in a heavy-duty diesel engine on fuel injection, combustion, performance, and emissions, and subsequently utilizes the obtained insight to propose changes to the engine calibration to mitigate the impact of the trade-offs. Experiments were carried out on a Detroit Diesel Corporation (DDC) S60 engine outfitted with exhaust gas recirculation (EGR). The results indicate that torque and fuel economy of diesel fuel can be matched, without smoke or NO x penalty, by increasing the duration of injection to compensate for the lower fuel density. The lower cetane number of JP-8 caused an increased ignition delay and increased premixed combustion, and their cumulative effect led to relatively unchanged combustion phasing. Under almost all conditions, JP-8 led to lower NO x and particulate matter (PM) emissions and shifted the NO x-PM trade-off favourably.


Author(s):  
David F. Merrion

Exhaust emissions from heavy-duty diesel engines have been legislated since the 1960’s and continue until 2010. Smoke emissions continue to be controlled but exhaust odor regulations were never promulgated. Gaseous emissions (oxides of nitrogen, carbon monoxide, hydrocarbons) were not regulated until 1973 and particulate matter first regulated in 1988. Emission regulations have been through several periods of cooperation between regulators and manufacturers but there have also been periods of conflict and lawsuits. The most recent issues are with the October 2002 requirements of the Consent Decrees signed by seven diesel engine manufacturers and USEPA/US DOJ/CARB. Also the 2007/2010 regulations are under review.


Sign in / Sign up

Export Citation Format

Share Document